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AN ITERATIVE PROCEDURE FOR OBTAINING
MAXIMUM-LIKELIHOOD ESTIMATES OF THE PARAMETERS

FOR A MIXTURE OF NORMAL DISTRIBUTIONS*

B. CHARLES PETERS, JR." AND HOMER F. WALKER:

Abstract. This paper addresses the problem of obtaining numerically maximum-likelihood estimates
of the parameters for a mixture of normal distributions. In recent literature, a certain successive-approxi-
mations procedure, based on the likelihood equations, was shown empirically to be effective in numerically
approximating such maximum-likelihood estimates; however, the reliability of this procedure was not
established theoretically. Here, we introduce a general iterative procedure, of the generalized steepest-
ascent (deflected-gradient) type, which is just the procedure known in the literature when the step-size is
taken to be 1. We show that, with probability as the sample size grows large, this procedure converges
locally to the strongly consistent maximum-likelihood estimate whenever the step-size lies between 0 and 2.
We also show that the step-size which yields optimal local convergence rates for large samples is determined
in a sense by the "separation" of the component normal densities and is bounded below by a number
between and 2.

1. Introduction. Let x be an n-dimensional random variable whose density
function p is a convex combination of normal densities, i.e.,

p (x) 2 aPi (x) for x finn,
i=1

where

ce >0, E ce/ 1,
i=1

and

1
),/21o 1/2 exp [-1/2(x. Ixo)r ;o-,(x_ IxO)l"

(27r

If {xk}, k 1,..., N, _1 is an independent sample of observations on x, then a
maximum-likelihood estimate of the parameters {a, Ix, Eg}i=l,...,,, is a choice of
parameters {a i, tx i, -i}i= 1,...,m which locally maximizes the log-likelihood function

N

L= Z log p(xk),
k=l

in which p is evaluated with the true parameters {s o
i, Ix, Z}i,...,, replaced by the

estimate {a, Ixi, Y-,i}= 1,...,,,. (In the following, it is usually clear from the context which
parameters are used in evaluating the density functions pi and p. Therefore, these
parameters are explicitly pointed out only when some ambiguity exists.) We admit
local maxima of L as maximum-likelihood estimates in order to avoid difficulties
presented by the fact that L has no global maximum. It is observed below that this
creates no problems when one is concerned with consistent maximum-likelihood
estimates.
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Clearly, L is a differentiable function of the parameters to be estimated. Equating
to zero the partial derivatives of L with respect to these parameters, one obtains, after
a straightforward calculation, the following necessary condition for a maximum-
likelihood estimate:

(la)

(lb)

(lc)

These are known as the likelihood equations. It follows from (la) that the
denominators in (lb) and (lc) are equal to 1 at a maximum-likelihood estimate and,
hence, their presence appears somewhat superfluous. However, these denominators
play a crucial role in establishing the convergence of the iterative procedure described
below.

A number of authors have investigated solutions of the likelihood equations and
the consistency of maximum-likelihood estimates in general. (See, for example,
Cram6r [3], Huzurbazar [8], Wald [13], Chanda [2], Aitchison and Silvey [1], and the
discussion in Zacks [15].) For completeness we have included in Appendix A a brief
proof of a multidimensional analogue of Cram6r’s result to the effect that, loosely
speaking, there is a unique solution of the likelihood equations which tends with
probability 1 to the true parameters as the sample size N approaches infinity.
Furthermore, this solution is a maximum-likelihood estimate, indeed the unique
strongly consistent maximum-likelihood estimate. More precisely, if certain regularity
conditions on the derivatives of the density function with respect of the parameters are
satisfied and the information matrix is positive-definite, then with probability 1, for
any sufficiently small neighborhood of the true parameters, there is for sufficiently
large N a unique solution of the likelihood equations in that neighborhood and this
solution is a maximum-likelihood estimate. This note is addressed to the problem of
determining this strongly consistent maximum-likelihood estimate by successive
approximations.

The likelihood equations, as written, suggest the following iterative procedure for
obtaining a solution: Beginning with some set of starting values, obtain successive
approximations to a solution by inserting the preceding approximations in the
expressions on the right-hand sides of (la), (lb), and (lc). This scheme is attractive for
its relative ease of implementation, and we discuss below the findings of several
authors concerning its use in obtaining maximum-likelihood estimates. For a dis-

cussion of other methods of determining maximum-likelihood estimates, see Kale [9]
and Wolfe [14] as well as the authors given below.

Empirical studies of Day [4], Duda and Hart [5], and Hasselblad [6] suggest that
this scheme is convergent and that convergence is particularly fast when the
component normal densities in p are "widely separated" in a certain sense.
Unfortunately, the likelihood equations have many solutions in general, and the
iterates may converge to solutions, including "singular solutions" (see [5]), which are
not the strongly consistent maximum-likelihood estimate if care is not taken in the
choice of starting values. No theoretical evidence of convergence is given in [4], [5], or
[6]. Peters and Coberly [12] have proved that, if all of the parameters xi and Y_,i are
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held fixed, then the iterative procedure suggested by the equation (la) alone
converges locally to a maximum-likelihood estimate of the parameters ai, i=
1,..., m. (An iterative procedure is said to converge locally to a limit if the iterates
converge to that limit whenever the starting values are sufficiently near that limit.)
They also report on numerical studies in which the computational feasibility of this
procedure is demonstrated.

In the following, we present a general iterative procedure for determining the
strongly consistent maximum-likelihood estimate, of which the above procedure is a
special case. Indeed, our procedure is a generalized steepest-ascent (deflected-
gradient) method, and the above procedure is obtained when the step-size is taken to
be 1. We show that, with probability 1 as the sample size grows large, this procedure
converges locally to the strongly consistent maximum-likelihood estimate whenever
the step-size is between 0 and 2. Furthermore, the value of the step-size which yields
optimal local convergence rates is bounded from below by a number which always lies
between 1 and 2. In fact, this optimal step-size lies near 1 if the component popu-
lations are "widely separated" in a certain sense and cannot be much smaller than 2 if
two or more of the component populations have nearly identical means and covari-
ance matrices. We also prove that, if the covariance matrices Y-,i are held fixed, then
the restricted iterative procedure for the parameters ai and/z has these local con-
vergence properties with probability 1 whenever the sample size is at least rn (n + 1).
We conclude by comparing this procedure to other numerical methods for determin-
ing maximum-likelihood estimates.

2. The general iterative procedure. In order to minimize notational difficulties,
we introduce several vector spaces and give useful representations of their elements.
For each i, 1 -< --< m, ai, txi, and 2i are elements of the vector spaces R1, Rn, and the set
of all real, symmetric n n matrices, respectively. We denote by , J//, and ow the
respective m-fold direct sums of these spaces with themselves, and we represent
elements of , , and 5 as columns

It will be convenient to adopt the following notational equivalence for elements of the
direct sum
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If, for 1,..., m and 0 ///6, we denote

a p(x
Ai(0)--

k=l (Xk)’

(0)
k=l p(Xk)/I g=l ’P(k) J

1 rpi(Xk)/ll pi(Xk)

then the likelihood equations can be written as

(2)

where

A(O)=

A.((R))),
A((R))/

M((R))

One can write (2)more generally as

[A(O) t
\s(o)/

(3)

SI(O)

s(o)

for any value of e. Of course, (3) becomes (2) when e 1.
The following iterative procedure is suggested by (3) for obtaining a solution of

the likelihood equations: Beginning with some starting value (R)(1), define successive
iterates inductively by

(4) 0(k+l) @(0(k))
for k 1, 2, 3,.... This is the general iterative procedure with which this note is
concerned. Clearly, this procedure becomes the procedure given in the Introduction
when e 1.

In the next section, we show that if 0< e <2, then, with probability 1 as N
approach infinity, this procedure converges locally to the strongly consistent
maximum-likelihood estimate. This is done by showing that, with probability 1 as N
approaches infinity, the operator is locally contractive (in a suitable vector norm)
near that estimate, provided 0 < e < 2. In saying that is locally contractive near a
point 0 /5, we mean that there is a vector norm 11’ on , 6, and a
number A, 0-<_ h < 1, such that

(5) I1,. (o’)- oil _-< ,x lie’- oil,

whenever O’ lies sufficiently near O.

3. The local contractibility and convergence results. We now establish the
following

THEOREM. With probability 1 as N approaches infinity, is a locally contractive
operator (in some norm on sO)@6) near the strongly consistent maximum-
likelihood estimate whenever 0 < e < 2.

/A(O) 1
O (0)(1-e)O+e [M((R))

\s(o)/
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Our main result, given by the following corollary, is an immediate consequence of
this theorem.

COROLLAR’. With probability 1 as N approaches infinity, the iterative procedure
(4) converges locally to the strongly consistent maximum-likelihood estimate whenever
0<e<2.

Throughout the remainder of this paper, the symbol "7" denotes the Fr6chet
derivative of a vector-valued function of a vector variable. When ambiguity exists, the
specific vector variable of differentiation appears as a subscript of this symbol. For
questions concerning the definition and properties of Fr6chet derivatives, see
Luenberger 11].

Proof of the theorem. Let

be the strongly consistent maximum-likelihood estimate. We assume that ci :0,
1,. , m. (As N tends to infinity, the probability is 1 that this is the case.) It must

be shown that, with probability 1 as N approaches infinity, an inequality of the form
(5) holds whenever 0 < e < 2.

For any norm on 5e, one can write

(e’)- e (e)[e’- e] + o(11o’- o11: ).

Consequently, the theorem will be proved if it can be shown that, for 0< e < 2,
7(Pe (19) converges with probability 1 to an operator which has operator norm less than
1 with respect to a suitable vector norm on

One can write 7(Pe as (1-e) I plus a matrix of Fr6chet derivatives:

VA VcA VAt
V(b:(1-e)I+e VaM VaM VMI.

\VS VS VS/

This is consistent with our representation of elements of ’J//ow as columns.
The entries of the above matrix can themselves be represented as matrices of

Fr6chet derivatives. For i=l,...,m, we introduce inner products (x,y)=
T

X (CeiE-l)y on and (A, B)’=tr {A((ai/2)El)B T} on the space of real, symmetric
n xn matrices, and we define i(x)=pi(x)/p(x), /i(x)=(x-tzi), and 6i(x)=
[E7,1(X--txi)(X--tzi)T--I]. By the notation (x, ) we mean the operator which when
evaluated at y n, is (x, y). Similarly, the notation (A, )’ means the operator which
when evaluated at a real, symmetric n x n matrix B is (A, B)’.
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After a straightforward but extremely tedious calculation, one obtains with the aid
of equations (1) that at the maximum likelihood estimate

VA((R))=I-(diagai) - k=l

t,, (x)l \.,(x)/

VA((R)) =-(diag a,)
/l(Xk)].-- tix)!

(l(Xk)’l(Xk), ")i t T

VA((R)):-(diagai) -- l(Xk.
k=l

t.(x

( (Xk )C (Xk ), )t T

VaM((R))=- N1k=1 l(Xk)’l(Xk)). (x)

.,(x)

1
il(Xk)l(Xk tVM((R))=I-

k=l

.,(x),.(x)/

(l(Xk)"l(Xk),’) t
\(/3., (x )/. (x ), .>’1

(
N

)1
2 fl,(xt,)y/(x,)(6,(x,), ")7V.M((R))= diag k=l

__
3m(Xk )’ym (Xk )/

X7aS(O) -(diag Xi)
k=l

l(Xk)l(Xk). t t (x ) r

(l(Xk)l(Xk), *)tl t T

l(., (x )/., (x ), ")’,.1
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T

The inner products (., .) and (., .)’, together with scalar multiplication on Ra,
induce an inner product (., .) and M 6e. Setting

one obtains

(, o
v(o)= o ,r

0 eB32 O)tB23
(1-e)I+eB33

/(diag ai

-el 0

0

0 0 ){1_ u__ V(x,)(V(x,), )}I 0 k’l
0 (diag Zi)

Denoting the vector of true parameters by 190 one verifies without difficulty that
is of the form

1 N

V(O)= E1= F(xk, 0),

where the operator F(x, 19) not only has finite expectation (in norm) at 190 but also has
a Fr6chet derivative with respect to 19 for which the following holds" If I1" is any
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operator norm on VoF, then there exists a real-valued function f on En such that

n,f(x)p(x)

dx < oo

at (R)o and such that IIVoF(x, 19)11 _-< f(x) for all x " and all in a sufficiently small
neighborhood of 0. Since the solution of the likelihood equations is strongly
consistent, it follows from the strong law of large numbers (see Lo6ve [10]) that
V(@) converges with probability 1 to E(V(@)) as N approaches infinity.

To complete the proof of the theorem, it must be shown that E(V(@)) has
operator norm less than 1 with respect to some vector norm on whenever
0 < e < 2. A straightforward calculation yields

E(V(O)) 0 I 0-e I 0 V(x)(V(x),.)p(x)dx,
0 0 I 0 (diagE)

where a 7, 7, and XT, 1,. , m, are the components of O. Thus E(V(O))is an
operator on M@@of the form I-eQR, where

/(diagaT) 0 0

0= I 0
0 (diag

and

R In. V(x)(V(x), ")p(x)dx

are positive-definite and symmetric with respect to the inner product (., .). Since QR
is positive-definite and symmetric with respect to the inner product (., Q-1.) on
09 5e, it suffices to show that

(W, RW)=(W, Q-I[QR]W)<-(W, o-lw),
for all W M0)/t/03 5e. Indeed, it follows from this inequality that, with respect to the
inner product (., Q-a), the operator norm of QR is no greater than 1 and, hence, the
operator norm of E(V(0)) is less than 1 whenever 0< e < 2.

For
Yl

An operator T is symmetric with respect to an inner product (., .) if (x, Ty)= (Tx, y) and positive
definite if it is symmetric and (x, Tx)> 0 for x # O.
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one has

(W, RW>= 2 y,,(x)+ 2 vr(az-l),(x)yi(x)
i=’1 i=

0

2
p(x)dx

(a-lyi +vTE-13,i(x)+tr (B(1/2E]-I)6(x)T})a(x) p(x) dx

T-O-

__
(Ol-lyi-bt)i Z,i /i(X)q-tr{Bi(1/2-l)i(x)T})2olOii(X) p(x)dx.

The inequality is a consequence of the following corollary of Schwarz’s inequality" If
/i _->0 for i= 1,..., rn and if Y"=I ti 1, then I’=1 :t12 =< Y=I :2t for all
If the squared expressions in the last sum above are written out in full, one sees that
the integrals of the cross terms in these expressions vanish. Consequently

(W, R W>_-< i=l [l-2y/2 + (v ’x-li (x ))2 + (tr {Bi(1/2x-l)Si(x)T})2]api(x) dx.

Now

0-1 2(6a) a-lyZpi(x)dx=a yi,

(6b) In-(v]-lY(x))2p(x) dx In. v’T’ zP-I(X >P)(X P)r-lvap(x) dx

=<vi,

(6c) fn- (tr {Bi(Z-)6(x)})Zap(x) dx (B, E-B)’.

(A proof of (6c) follows below.) From (6a), (6b), and (6c), one concludes that

R "= O-
i=1 i=1 i=1

This completes the proof of the theorem.
Proof of (6c). Setting y Z-a/Z(x -) and

C n. (tr {B(E-a)6(x)T})Zap(x) dx,

one verifies that

1/ yy  Z )C
an"

(tr {B[- /2
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where po" N(0, I). Denoting .-1/2Bi,-1/2= D (dig), one then derives

C (tr {D[yyr-I]})po(y) dy

=c [(tr {Dyy r})- 2tr {D} tr {Dyyr}+ (tr {D})]po(y)dy
4 &

=a{ Y. djgd,q fR ygyjyqy,po(y)dy-2(tr {D})2+(tr {D})2}4 i,k,p,q

o o
_ogi ogi 1/2Bil/2} (6i 0-1) }- tr {D2} T tr {.?-l/2Bi.?- Z/- tr Bi -.i (.?-IBi)T

=(Bi,-lBi}l’.

4. The optimal e. The results just obtained state that, with probability 1 as N
approaches infinity, the iterative procedure (4) converges locally to the strongly
consistent maximum-likelihood estimate q whenever 0< e < 2. In this section we
observe that there exists a particular value of e, referred to as "the optimal e," which
yields, with probability 1, the fastest asymptotic uniform rate of local convergence of
(4) near 19. We derive a lower bound between 1 and 2 on the optimal e and relate it to
the separation of the component populations in the mixture.

From the proof of the theorem, one sees that the optimal e is that which
minimizes the spectral radius of the operator E(V(6))) restricted to the space
g @rid Se, where g is the subspace of sg whose components sum to zero. Indeed, the
restricted operator E(Vq((R))) I-eOR is symmetric on g@dd( with respect to
the inner product (., 0-1 .). Consequently, its operator norm with respect to this inner
product is equal to its spectral radius and, hence, minimal. We observe that the
restriction of OR to g @rid @ Y’ is positive-definite and symmetric with respect to the
inner product (., 0-1 .). Ltting p and r denote, respectively, the largest and smallest
eigenvalues of this restriction of OR, one verifies that the spectral radius of
E(V((R))), restricted to g@dd@5, is minimized when 1-er= cO-1, i.e., when
e 2/(0 + r).

It follows from the proof of the theorem that 0 is never greater than 1. Thus the
optimal e is bounded below by 2/1 + r, where r lies between 0 and 1. In particular,
this lower bound on the optimal e lies between 1 and 2. We have been. unable to
determine 0 more precisely in general. It should be noted that, if 0 is strictly less than
1/2, then the optimal e is actually greater than 2, even though the theorem just proved
fails to guarantee the local convergence of (4) for such values of e.

Suppose that the component populations in the mixture are "widely separated"
in the sense that each pair (/x 0, o) differs greatly from every other such pair. Then, for
i,/’= 1,...,m,

,p,(x) p,()
-0 for x ", whenever # j.

p(x) p(x)

One sees that QR I and, hence, p and r must both lie near 1. Consequently, fastest
asymptotic local convergence rates are obtained for e near 1, and, for the optimal e,
E(V(6)))=I-eQR -0. Thus for mixtures whose component populations are
"widely separated," the optimal e is only slightly greater than 1, and rapid first-order
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local convergence of the iterative procedure (4) to 19 can be expected asymptotically
for this e.

Now suppose that the component populations in the mixture are such that at least
two pairs (/x,E). and (tz j, ET), ij, are nearly identical. Then /3i(x)/3j(x),
[i(X)yi(X)[j(X)yj(X) and [i(X)(i(X)[j(X)j(X), and it follows that R is nearly
singular and, hence, that - is near zero. One concludes that the optimal e cannot be
much smaller than 2. In fact if p is near 1, as is the case when all pairs (z, E) are
nearly identical, then the optimal e must lie near 2. Furthermore, the spectral radius
of E(V(I)((R))) is near 1, even for the optimal e; therefore, slow first-order
convergence can be expected asymptotically in this case.

5. Maximum-likelihood estimates of the a priori probabilities and the means. It
happens that, if the covariance matrices Ei, 1,..., m, are held fixed, then, under
certain conditions, an appropriately restricted version of the iterative procedure (4)
converges locally with probability 1 to a maximum-likelihood estimate of the
parameters a and /x

, 1,..., m, whenever the number of observations in the
sample reaches a certain finite size. To be more specific, we introduce the following

notation" For g e M@///and 2; e o, denote

by (, ). Then, for given ;, the likelihood equations for the parameters and x,
i- 1,..., m can be written as

(A(O,.))(R)
\M(), )

or, more generally as

(7) {A(),))) cP, (), Y_,)=_ (1 e)) + ekM(), )
for any e. The appropriate iterative procedure to consider is the following" Beginning
with some starting value (1), define successive iterates inductively by

(8) ()<k+ 1> ()e (o<k>, )
for k 1, 2, 3,. . Our result concerning this procedure is given by the theorem and
its corollary below.

THEOREM. IfN --> m (n + 1) and if (), ,) is a solution of (7) which lies sufficiently
near a solution of (3), then, with probability 1, is a locally contractive operator (in
some norm on M near ) whenever 0 < e < 2.

COROLLARY. If N>=m(n + 1) and if (),,) is a solution of (7) which lies
sufficiently near a solution of (3), then, with probability 1, the iterative procedure (8)
converges locally to ) whenever 0 < e < 2.

Proof of the theorem. Suppos that N => m (n + 1) and 0 < e < 2. As in the proof of
the preceding theorem, it suffices to show that, with probability 1, Vo(), ,) has
operator norm less than 1 with respect to some vector norm on :t/. Since Vcb
depends continuously on and _,, this need only be shown when (, ,) is a solutioo of
(3).
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From the proof of the preceding theorem, one sees that if (O, ) is a solution of
(3), then

(I 0)_((diagai)0)/1 N (x,)((x,),.)}V(, ,) o o , =-
where

l(X)

(x)
V(X)

l(X ),/1 (X)

(x)w(x)

and the inner product (., .) is now the inner product induced on s4(A/ by scalar
multiplication on R and the inner products (., .)[ on R". As before, (,) is of
the form I-e(/, where

and

( ((diag ai) 0)0 I’

{IN }
k=l

We observe that 0/ is symmetric and positive semi-definite with respect to the inner
product (., (-1.). In fact, it is shown in Appendix B that, with probability 1, (/ is
positive-definite with respect to this inner product. Consequently, the theorem will be
proved if it can be shown that

for all W s4@A/.
For

Yl

D1

one has

(Ivr)’-- E Yi[3i(Xk) + E V(Ol’i";1)[3i(Xk)’i(Xk)
k=l i=’1 i=1

-1 i(Xk))Ogi[3i(Xk)
1 . (ogi Yi + v T-71N k=l i=’l

1 N-- E E [ogTlyi+D-71i(Xk)]20i3i(xk)
N k=l i=l
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by Schwarz’s inequality. Since (, 2) is a solution of (3), this easily yields

i=1 i=1

and the proof is complete.
If the conclusion of the theorem holds for some solution (, ) of (7), then, as in

the preceding section, a particular value of e can be determined which yields the
fastest uniform rate of local convergence of (8) near I. With respect to the inner
product <., 0-1.), 0/ is positive-definite and symmetric on g’///. Denoting the
largest and smallest eigenvalues of the restriction of OR to q( by p and r,
respectively, one sees that the optimal e is again given by e 2/(p+’). Since the
restriction of (/ has operator norm no greater than 1 with respect to the inner
product (., (-1.), p must be no greater than 1. Hence, e => 1/(1 +’), where - lies
between 0 and 1. Reasoning as before, one sees that the optimal e lies near 1 if the
component populations are "widely separated," and cannot be much less than 2 if two
or more of the populations have nearly identical means and covariance matrices. In
the former case, rapid first-order local convergence of (8) can be expected for the
optimal e. In the latter case, if p is near 1, then the optimal e must be near 2, and slow
first-order convergence of (8) can be expected, even for the optimal e.

6. Concluding remarks. A number of numerical techniques for obtaining maxi-
mum-likelihood estimates of the parameters for a mixture of normal distributions
have been discussed in the literature. In addition to the usual steepest-ascent method
for obtaining a local maximum of the log-likelihood function, we mention in particular
Newton’s method, the method of scoring, and the modifications of these procedures
investigated by Kale [9] for obtaining solutions of the likelihood equations. It is our
feeling that the iterative procedure (4) offe:s considerable computational advantages
over these procedures in many cases of practical interest.

Even though the partial derivatives of the log-likelihood function are not appre-
ciably more difficult to evaluate than the expressions used in defining the function ,
the procedure (4), which is a generalized steepest-ascent (deflected gradient) method
appears to have two particular advantages over the usual steepest-ascent method.
First, the major practical advantage of procedure (4) is that if e is no greater than 1,
then the constraints of the problem are automatically satisfied by the successive
iterates for any feasible choice of the starting value (R)(1); i.e., the successive Y-,i’s are
symmetric ad positive-definite and the successive ai’s are positive and sum to 1. With
more conventional ascent procedures, special precautions must be taken to insure that
the inequality constraints are not violated, at least in the initial stages of the iteration.
Second, in the interval of step sizes 0 < e <= 1 in which the constraints are preserved,
there is one step-size, namely e 1, which is best in terms of the asymptotic rate of
convergence, regardless of the particular mixture problem at hand. This suggests that
the likelihood function is actually increased at each stage in procedure (4) with e 1, a
conjecture which is supported by our experience and that of others [6], but which we
have been unable to prove.

Although Newton’s method and the method of scoring offer quadratic and
near-quadratic convergence, respectively, for large sample sizes, they require at each
iteration the inversion of a square matrix whose dimension is equal to the number of
independent variables among the parameters, namely (m(n + 1)(n +2)/2)-1. Thus
these methods may be less efficient computationally than the iterative procedure (4) if
m and n are large, even though they may yield a satisfactory approximate solution
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after fewer iterations. The modified versions of Newton’s method and the method of
scoring do not require the re-calculation of the inverse of a large matrix at each step.
However, quadratic convergence is not achieved with these modified methods, and
multiplication by a large matrix must still be carried out at each iteration.

Appendix A. We now give a brief proof of the existence and uniqueness of the
strongly consistent maximum-likelihood estimate. For the sake of generality, this is
done in a somewhat broader context than is necessary for this paper.

Let p(x, 19) be a probability density function of a vector variable x R and a
vector parameter 19 . If {x,}k= 1,...,r is an independent sample of observations on a
random variable x e R" whose probability density function is p(x, 19) for some 190

N, then a maximum-likelihood estimate of 190 is a choice of 19 which locally maxi-
mizes the log-likelihood function

N

L log p (Xk, 19).
k=l

If p is a differentiable function of 19, then a necessary condition for a maximum-
likelihood estimate is that the likelihood equations

OL

be. satisfied, where (R)i is the ith component of 19. In the following, our objective is to
show that if p satisfies certain conditions, then, given any sufficiently small neighbor-
hood of 19, there is, with probability 1 as N approaches infinity, a unique solution of
the likelihood equations in that neighborhood, and this solution is a maximum-
likelihood estimate of 00

We assume that p(x, O) satisfies the following conditions of Chanda [2]: (a) There
is a neighborhood 1 of 190 such that for all (R) fl, for almost all x N", and for
i, j, k 1,. , u, Op/OOi, O2p/OOi OOi, and 03p/OOi O0 (9Ok exist and satisfy

Op OP <- fi (x ), ii, (x ),

where fi and 0 are integrable and fii, satisfies

(x)p (x, < oo.190 dx

(b) The matrix

is positive-definite at 0. J(O)= (In O lg p O lg p

OOi O-j p dx

Let ((R))
1
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It is immediately seen that (O)=0 if and only if the likelihood equations are
satisfied, and that, by the strong law of large numbers [10], (O) converges with
probability 1 to zero. Furthermore, it follows from assumptions (a) and (b) above that
there exists a neighborhood fo of 00 (contained in f and, for convenience, convex)
and a positive e such that, with probability 1 as N approaches infinity, V(O)-<-eI
for all O6 lq. (That is, V((R))+ el is negative-semidefinite.) Denoting the spherical
neighborhood of radius 6 about 190 by f, we establish the following

LEMMA. With probability 1 as N approaches infinity,
(i) is one-to-one on fo,

(ii) (f) contains the ball of radius e3 about(0) whenever f
_

1).
Proof. We may assume that 7(O)<--eI for all O I), since the probability that

this is the case is 1 as N approaches infinity. To prove (i), suppose that 5f(O) ?(0)
for 01 and 1)2 in fo. Then

0 (o o)[(o)-(o)]

The negative-definiteness of V implies that (R)1= 2, and (i) is proved.
To prove (ii), suppose that f

_
fo, and let (R)1 be a boundary point of fl. Then

V((R) + t[O1- (R)1) dt}((R)1-19).

After left-multiplying this equation by ((R)1_(R)o), one verifies using Schwarz’s
inequality and the negative-definiteness of 7 that

where II" denotes the usual Euclidean norm on R. Since all boundary points of
5(D) are images under of boundary points of lq, the proof of (ii) is complete.

The desired result of this appendix follows immediately from this lemma and the
remarks preceding it. Indeed, if D, is any neighborhood of 00 which is contained in
1, then one can find a for which D, D,1 Z -0. By the lemma, the probability is 1 as
N tends to infinity that is one-to-one on fl and that (f) and, hence, 5(D,1)
contain the ball of radius e6 about ((R)o). Since ((R)o) converges with probability 1 to
zero, one concludes that, with probability 1 as N approaches infinity, there exists a
unique (R) D, for which ((R))= 0. Since the probability also is 1 as N approaches
infinity that 7 is negative-definite on fl, this O is, with probability 1, a maximum-
likelihood estimate.

Appendix B. We now prove that the operator (/ is positive-definite on t/
with probability 1 whenever N => rn (n + 1). Since

0/ ((diag0 k=l
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it suffices to show that the vectors

p(x)
p(x)

p(x)
pl(Xk)

(x-,)
p(x)

k=l,...,N,

span @dd with probability 1 whenever N >= m(n + 1). This follows from the more
general result below.

LEMMA. Let {Xk}k= a,...,N be an independent sample of observations on a random
variable x in s which is distributed with a probability density ]:unction p. I V is a
real-analytic function from to t whose component /’unctions are linearly
independent, then the vectors V(xk ), k 1,. , N, span ’ with probability 1 whenever
N>_t.

Proof. Denoting the/’th component function of V by v., we define a real-analytic
function vj from to [ by

v(x

v()=

)i(X

for f 1,..., t. Our proof of the lemma consists of showing inductively that, for
/" 1,..., t, the set {V’(Xk)}k=l,...,i spans i with probability 1. We make the preli-
minary observation that, since the real-analytic functions vi are assumed to be linearly
independent, any nonzero linear combination of them vanishes only on a set of
Lebesgue measure zero in I.

From the observation above, Va (xa) is nonzero with probability 1; hence Va(xa)
spans a with probability 1. Suppose now that, for some f, l<-/’<t, the set
{V’(Xk)}k=a,...,i spans J with probability 1. Then, with probability 1, the set
{Wi+l(Xk)}k=l,...,j+l fails to span j+l if and only if

(B.1) V/+l(xi+a) E CkVi+l(Xk)
k=l

for some set of constants {Ck}k= 1,-..,. If (B. 1) holds, the constants Ck are determined by

Cl

o;1 V/.(Xi+ )

with probability 1, where i is the j x/" matrix whose kth column is V.(Xk). Thus, with
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probability 1, (B.1) holds if and only if

Now

Vj+I(Xj+I) O.

is a nonzero linear combination of the functions Vl," /-)/+1 and, hence, vanishes only
on a set of Lebesgue measure zero in Ns. One concludes that { V+l(Xk)}k= 1,...,i+ fails to
span Nj+I with probability zero. This completes the induction, and the lemma is
proved.
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