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MIXTURE DENSITIES, MAXIMUM LIKELIHOOD AND
THE EM ALGORITHM*

RICHARD A. REDNERf AND HOMER F. WALKER:I:

Abstract. The problem of estimating the parameters which determine a mixture density has been the
subject of a large, diverse body of literature spanning nearly ninety years. During the last two decades, the
method of maximum likelihood has become the most widely followed approach to this problem, thanks primarily
to the advent of high speed electronic computers. Here, we first offer a brief survey of the literature directed
toward this problem and review maximum-likelihood estimation for it. We then turn to the subject of ultimate
interest, which is a particular iterative procedure for numerically approximating maximum-likelihood estimates
for mixture density problems. This procedure, known as the EM algorithm, is a specialization to the mixture
density context of a general algorithm of the same name used to approximate maximum-likelihood estimates for
incomplete data problems. We discuss the formulation and theoretical and practical properties of the EM
algorithm for mixture densities, focussing in particular on mixtures of densities from exponential families.
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1. Introduction. Of interest here is a parametric family offinite mixture densities,
i.e., a family of probability density functions of the form

(1.1) p(x I,I,) cp;(x 14;), x (Xl, Xn) r Rn,
i=1

where each ai is nonnegative and =1 ai 1, and where each Pi is itself a density function
parametrized by 4, c f,. Rn:. We denote (al, am, 41, 4m) and set

f-- Cl,. ",Om, 41," ",4m): Oi---- landoi>_-0,4icfifori-- 1,. .,m.
i=l

The more general case of a possibly infinite mixture density, expressible as

(1.2) fa P(X rb(X))da(X)’

is not considered here, even though much of the following is applicable with few
modifications to’such a density. For general references dealing with infinite mixture
densities and related densities not considered here, see the survey of Blischke 13]. Also, it
is understood that in determining probabilities, probability density functions are
integrated with respect to a measure on R which is either Lebesgue measure, counting
measure on some finite or countably infinite subset of Rn, or a combination of the two. In
the following, it is usually obvious from the context which measure on R is appropriate
for a particular probability density function, and so measures on R are not specified
unless there is a possibility of confusion. It is further understood that the topology on ft is
the natural product topology induced by the topology on the real numbers. At times when
it is convenient to determine this topology by a norm, we will regard elements of f as
(m + im_l n; -vectors and consider norms defined on such vectors.

Finite mixture densities arise naturallymand can naturally be interpretedmas
densities associated with a statistical population which is a mixture of rn component
populations with associated component densities {Pi}i=l,...,m and mixing proportions
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{Oli}i=l,....m. Such densities appear as fundamental models in areas of applied statistics such
as statistical pattern recognition, classification and clustering. (As examples of general
references in the broad literature on these subjects, we mention Duda and Hart [46],
Fukunaga [51], Hartigan [68], Van Ryzin [148], and Young and Calvert [159]. For
some specific applications, see, for example, the Special Issue on Remote Sensing of the
Communications in Statistics [33]). In addition, finite mixture densities often are of
interest in life testing and acceptance testing (cf. Cox [35], Hald [65], Mendenhall and
Hader [101], and other authors referred to by Blischke [13]). Finally, many scientific
investigations involving statistical modeling require by their very nature the consideration
of mixture populations and their associated mixture densities. The example of Hosmer
[75] below is simple but typical. For references to other examples in fishery studies,
genetics, medicine, chemistry, psychology and other fields, see Blischke [13], Everitt and
Hand [47], Hosmer [74] and Titterington [145].

Example 1.1. According to the International Halibut Commission of Seattle,
Washington, the length distribution of halibut of a given age is closely approximated by a
mixture of two normal distributions corresponding to the length distributions of the male
and female subpopulations. Thus the length distribution is modeled by a mixture density
of the form

(1.3) p(x[O) a,pl(xl4,) 4- apz(x b2), x R 1,

where, for 1, 2,

(1.4) pi(xlcbi) e-{x-’’)/2’ tl)i (]d,i, ffi2) T R2,
,k/ff

and (a, a, 4, 42). Suppose that one would like to estimate on the basis of some
sample of length measurements of halibut of a given age. If one had a large sample of
measurements which were labeled according to sex, then it would be an easy and
straightforward matter to obtain a satisfactory estimate of. Unfortunately, it is reported
in [75] that the sex of halibut cannot be easily (i.e., cheaply) determined by humans;
therefore, as a practical matter, it is likely to be necessary to estimate from a sample in
which the majority of members are not labeled according to sex.

Regarding p in (1.1) as modeling a mixture population, we say that a sample
observation on the mixture is labeled if its component population of origin is known with
certainty; otherwise, we say that it is unlabeled. The example above illustrates the central
problem with which we are concerned here, namely that of estimating in (1.1) using a
sample in which some or all of the observations are unlabeled. This problem is referred to
in the following as the mixture density estimation problem. (For simplicity, we do not
consider here the problem of estimating not only but also the number m of component
populations in the mixture.) A variety of cases of this problem and several approaches to
its solution have been the subject of or at least touched on by a large, diverse set of papers
spanning nearly ninety years. We begin by offering in the next section a cohesive but very
sketchy review of those papers of which we are aware which have as their main thrust
some aspect of this problem and its solution. It is hoped that this survey will provide both
some perspective in which to view the remainder of this paper and a starting point for
those who wish to explore the literature associated with this problem in greater depth.

Following the review in the next section, we discuss at some length the method of
maximum-likelihood for the mixture density estimation problem. In rough general terms,
a maximum-likelihood estimate of a parameter which determines a density function is a
choice of the parameter which maximizes the induced density function (called in this
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context the likelihoodfunction) of a given sample of observations. Maximum-likelihood
estimation has been the approach to the mixture density estimation problem most widely
considered in the literature since the use of high speed electronic computers became
widespread in the 1960’s. In 3, the maximum-likelihood estimates of interest here are
defined precisely, and both their important theoretical properties and aspects of their
practical behavior are summarized.

The remainder of the paper is devoted to the subject of ultimate interest here, which
is a particular iterative procedure for numerically approximating maximum-likelihood
estimates of the parameters in mixture densities. This procedure is a specialization to the
mixture density estimation problem of a general method for approximating maximum-
likelihood estimates in an incomplete data context which was formalized by Dempster,
Laird and Rubin [39] and termed by them the EM algorithm (E for "expectation" and M
for "maximization"). The EM algorithm for the mixture density estimation problem has
been studied by many authors over the last two decades. In fact, there have been a number
of independent derivations of the algorithm from at least two quite distinct points of view.
It has been found in most instances to have the advantages of reliable global convergence,
low cost per iteration, economy of storage and ease of programming, as well as a certain
heuristic appeal. On the other hand, it can also exhibit hopelessly slow convergence in
some seemingly innocuous applications. All in all, it is undeniably of considerable current
interest, and it seems likely to play an important role in the mixture density estimation
problem for some time to come.

We feel that the point of view toward the EM algorithm for mixture densities
advanced in [39] greatly facilitates both the formulation of a general procedure for
prescribing the algorithm and the understanding of the important theoretical properties of
the algorithm. Our objectives in the following are to present this point of view in detail in
the mixture density context, to unify and extend the diverse results in the literature
concerning the derivation and theoretical properties of the EM algorithm, and to review
and add to what is known about its practical behavior.

In-4, we interpret the mixture density estimation problem as an incomplete data
problem, formulate the general EM algorithm for mixture densities from this point of
view, and discuss the general properties of the algorithm. In 5, the focus is narrowed to
mixtures of densities from the exponential family, and we summarize and augment the
results of investigations of the EM algorithm for such mixtures which have appeared in
the literature. Finally, in 6, we discuss the performance of the algorithm in practice
through qualitative comparisons with other algorithms and numerical studies in simple
but important cases.

2. A review of the literature. The following is a very brief survey of papers which are
primarily directed toward some part of the mixture density estimation problem. No
attempt has been made to include papers which are strictly concerned with applications of
estimation procedures and results developed elsewhere. Little has been said about papers
which are of mainly historical interest or peripheral to the subjects of major interest in the
sequel. For additional references relating to mixture densities as well as more detailed
summaries of the contents of many of the papers touched on below, we refer the reader to
the recently published monograph by Everitt and Hand [47] and the recent survey by
Titterington [145]. As a convenience, this survey has been divided somewhat arbitrarily

Throughout this paper, we use "global convergence" in the sense of the optimization community, i.e., to
mean convergence to a local maximizer from almost any startingpoint (cf. Dennis and Schnabel [42, p. 5]).
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by topics into four subsections. Not surprisingly, many papers are cited in more than one
subsection.

2.1. The method of moments. The first published investigation relating to the
mixture density estimation problem appears to be that of Pearson 109]. In that paper, as
in Example 1.1, the problem considered is the estimation of the parameters in a mixture of
two univariate normal densities. The sample from which the estimates are obtained is
assumed to be independent and to consist entirely of unlabeled observations on the
mixture. (Since this is the sort of sample dealt with in the vast majority of work on the
problem at hand, it is understood in this review that all samples are of this type unless
otherwise indicated.) The approach suggested by Pearson for solving the problem is
known as the method of moments. The method of moments consists generally of equating
some set of sample moments to their expected values and thereby obtaining a system of
(generally nonlinear) equations for the parameters in the mixture density. To estimate the
five independent parameters in a mixture of two univariate normal densities according to
the procedure of [109], one begins with equations determined by the first five moments
and, after considerable algebraic manipulation, ultimately arrives at expressions for
estimates which depend on a suitably chosen root of a single ninth-degree polynomial.

From the time of the appearance of Pearson’s paper until the use of computers
became widespread in the 1960’s, only fairly simple mixture density estimation problems
were studied, and the method of moments was usually the method of choice for their
solution. During this period,, most energy devoted to mixture problems was directed
toward mixtures of normal densities, especially toward Pearson’s case of two univariate
normal densities. Indeed, most work on normal mixtures during this period was intended
either to simplify the job of obtaining Pearson’s estimates or to offer more accessible
estimates in restricted cases. In this connection, we cite the papers of Charlier [25] (who
referred to the implementation of Pearson’s method as "an heroic task"), Pearson and Lee
[111], Charlier and Wicksell [26], Burrau [19], StrSmgren [132], Gottschalk [55], Sittig
[129], Weichselberger [152], Preston [116], Cohen [32], Dick and Bowden [43] and
Gridgeman [57]. More recently, several investigators have studied the statistical proper-
ties of moment estimates for mixtures of two univariate normal densities and have
compared their performance with that of other estimation methods. See Robertson and
Fryer [125], Fryer and Robertson [50], Tan and Chang [138] and Quandt and Ramsey
[8].

Some work has been done extending Pearson’s method of moments to more general
mixtures of normal densities and to mixtures of other continuous densities. Pollard [115]
obtained moment estimates for a mixture of three univariate normal densities, and
moment estimates for mixtures of multivariate normal densities were studied by Cooper
[34], Day [37] and John [81]. These authors all made simplifying assumptions about the
mixtures under consideration in order to reduce the complexity of the moment estimation
problem. Gumbel [58] and Rider [123] derived moment estimates for the means in a
mixture of two exponential densities under the assumption that the mixing proportions are
known. Later, Rider offered moment estimates for mixtures of Weibull distributions in
124]. Moment estimates for mixtures of two gamma densities were treated by John [82].

Tallis and Light [136] explored the relative advantages of fractional moments in the case
of mixtures of two exponential densities. Also, Kabir [83] introduced a generalized
method of moments and applied it to this case.

Moment estimates for a variety of simple mixtures of discrete densities were derived
more or less in parallel with moment estimates for mixtures of normal and other
continuous densities. In particular, moment estimates for mixtures of binomial and
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Poisson densities were investigated by Pearson [110], Muench [102], [103], Schilling
[127], Gumbel [58], Arley and Buch [4], Rider [124], Blischke [12], [14] and Cohen
[30]. Kabir [83] also applied his generalized method of moments to a mixture of two
binomial densities. For additional information on moment estimation and many other
topics of interest for mixtures of discrete densities, see the extensive survey of Blischke
[131.

Before leaving the method of moments, we mention the important problem of
estimating the proportions alone in a mixture density under the assumption that the
component densities, or at least some useful statistics associated with them, are known.
Most general mixture density estimation procedures can be brought to bear on this
problem, and the manner of applying these general procedures to this problem is usually
independent of the particular forms of the densities in the mixture. In addition to the
general estimation procedures, a number of special procedures have been developed for
this problem; these are discussed in 2.3. of this review. The method of moments has the
attractive property for this problem that the moment equations are linear in the mixture
proportions. Moment estimates of proportions were discussed by Odell and Basu [104]
and Tubbs and Coberly 147].

2.2. The method of maximum likelihood. With the arrival of increasingly powerful
computers and increasingly sophisticated numerical methods during the 1960’s, investi-
gators began to turn from the method of moments to the method of maximum likelihood
as the most widely preferred approach to mixture density estimation problems. To
reiterate the working definition given in the introduction, we say that a maximum-
likelihood estimate associated with a sample of observations is a choice of parameters
which maximizes the probability density function of the sample, called in this context the
likelihood function. In the next section, we define precisely the maximum-likelihood
estimates of interest here and comment on their properties. In this subsection, we offer a
very brief tour of the literature addressing maximum-likelihood estimation for mixture
densities. Of course, more is said in the sequel about most of the work mentioned below.

Actually, maximum-likelihood estimates and their associated efficiency were often
the subject of wishful thinking prior to the advent of computers, and some work was done
then toward obtaining maximum-likelihood estimates for simple mixtures. Specifically,
we cite a curious paper of Baker [5] and work by Rao [119] and Mendenhall and Hader
101 ]. In both [119] and 101 ], iterative procedures were successfully used to obtain

approximate solutions of nonlinear equations satisfied by maximum-likelihood estimates.
In [119], a system of four equations in four unknown parameters was solved by the
method of scoring; in [101], a single equation in one unknown was solved by Newton’s
method. Both of these methods are described in 6. Despite these successes, the problem
of obtaining maximum-likelihood estimates was generally considered during this period
to be completely intractable for computational reasons.

As computers became available to ease the burden of computation, maximum-
likelihood estimation was proposed and studied in turn for a variety of increasingly
complex mixture densities. As before, mixtures of normal densities were the subject of
considerable attention. Hasselblad [70] treated maximum-likelihood estimation .for
mixtures of any number of univariate normal densities; his major results were later
obtained independently by Behboodian [9]. Mixtures of two multivariate normal densities
with a common unknown covariance matrix were addressed by Day [37] and John [81].
The general case of a mixture of any number of multivariate normal densities was
considered by Wolfe [153], and additional work on this case was done by Duda and Hart
[46] and Peters and Walker [113]. Redner [121] and Hathaway [72] proposed,
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respectively, penalty terms on the likelihood function and constraints on the variables in
order to deal with singularities. Tan and Chang [138] compared the moment and
maximum-likelihood estimates for a mixture of two univariate normal densities with
common variance by computing the asymptotic variances of the estimates. Hosmer [74]
reported on a Monte Carlo study of maximum-likelihood estimates for a mixture of two
univariate normal densities when the component densities are not well separated and the
sample size is small.

Several interesting variations on the usual estimation problem for mixtures of normal
densities have been addressed in the literature. Hosmer [75] compared the maximum-
likelihood estimates for a mixture of two univariate normal densities obtained from three
different types of samples, the first of which is the usual type consisting of only unlabeled
observations and the second two of which consist of both labeled and unlabeled
observations and are distinguished by whether or not the labeled observations contain
information about the mixing proportions. Such partially labeled samples were also
considered by Tan and Chang [137] and Dick and Bowden [43]. (We elaborate on the
nature of these samples and how they might arise in 3.) The treatment of John [81] is
unusual in that the number of observations from each component in the mixture is
estimated along with the usual component parameters. Finally, a number of authors have
investigated maximum-likelihood estimates for a "switching regression" model which is a
certain type of estimation problem for mixtures of normal densities; see the papers of
Quandt [117], Hosmer [76], Kiefer [88] and the comments by Hartley [69], Hosmer
[77], Kiefer [89] and Kumar, Nicklin and Paulson [91] on the paper of Quandt and
Ramsey 118]. A generalization of the model considered by these authors was touched on
by Dennis [40].

Maximum-likelihood estimation has also been studied for a variety of unusual and
general mixture density problems, some of which include but are not restricted to the
usual normal mixture problem. Cohen [31] considered an unusual but simple mixture of
two discrete densities, one of which has support at a single point; he focused in particular
on the case in which the other density is a negative binomial density. Hasselblad [71]
generahzed his earlier results in [70] to include mixtures of any number of univariate
densities from exponential families. He included a short study comparing maximum-
likelihood estimates with the moment estimates of Blischke [14] for a mixture of two
binomial distributions. Baum, Petrie, Soules and Weiss [8] addressed a mixture estima-
tion problem which is both unusual and in one respect more general than the problems
considered in the sequel. In their problem, the a priori probabilities of sample observations
coming from the various component populations in the mixture are not independent from
one observation to the next (that is, they are not simply the proportions of the component
populations in the mixture), but rather are specified to follow a Markov chain. Their
results are specifically applied to mixtures of univariate normal, gamma, binomial and
Poisson densities, and to mixtures of general strictly log concave density functions which
are identical except for unknown location and scale parameters. John [82] treated
maximum-likelihood estimation for a mixture of two gamma distributions in a manner
similar to that of [81]. Gupta and Miyawaki [59] considered uniform mixtures. Peters
and Coberly 112] and Peters and Walker 114]. treated maximum-likelihood estimates
of proportions and subsets of proportions for essentially arbitrary mixture densities.
Maximum-likelihood estimates were included by Tubbs and Coberly [147] in their study
of the sensitivity of various proportion estimators. Other maximum-likelihood estimation
problems which are closely related to those considered here are the latent structure
problems touched on by Wolfe [153] (see also Lazarsfeld and Henry [93]) and the
problems concerning frequency tables derived by indirect observation addressed by
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Haberman [62], [63], [64]. Finally, although infinite mixture densities of the general
form (1.2) are specifically excluded from consideration here, we mention a very
interesting result of Laird [92] to the effect that, under various assumptions, the
maximum-likelihood estimate of a possibly infinite mixture density is actually a finite
mixture density. A special case of this result was shown earlier by Simar 128] in a broad
study of maximum-likelihood estimation for possibly infinite mixtures of Poisson densi-
ties.

2.3. Other methods. In. addition to the method of moments and the method of
maximum-likelihood, a variety of other methods have been proposed for estimating
parameters in mixture densities. Some of these methods are general purpose methods.
Others are (or were at the time of their derivation) intended for mixture problems the
forms of which make (or made) them either ill suited for the application of more widely
used methods or particularly well suited for the application of special purpose methods.

For mixtures of any number of univariate normal densities, Harding [67] and Cassie
[20] suggested graphical procedures employing probability paper as an alternative to
moment estimates, which were at that time practically unobtainable in all but the
simplest cases. Later, Bhattacharya [11] prescribed other graphical methods as a
particularly simple way of resolving a mixture density into normal components. These
graphical procedures work best on mixture populations which are well separated in the
sense that each component has an associated region in which the presence of the other
components can be ignored. More recently, Fowlkes [49] introduced additional proce-
dures which are intended to be more sensitive to the presence of mixtures than other
methods. In the bivariate case, Tarter and Silvers 140] introduced a graphical procedure
for decomposing mixtures of any number of normal components.

Also for general mixtures of univariate normal densities, Doetsch [45] exhibited a
linear operator which reduces the variances of the component densities without changing
their proportions or means and used this operator in a procedure which determines the
component densities one at a time. For applications and extensions of.this technique to
other densities, see Medgyessy [100] (and the review by Mallows [98]), Gregor [56] and
Stanat [130]. In [126], Sammon considered a mixture density consisting of an unknown
number of component densities which are identical except for translation by unknown
location parameters; he derived techniques based on convolution for estimating both the
number of components in the mixture and the location parameters.

A number of specialized procedures have been developed for application to the
problem of estimating the proportions in a mixture under the assumption that something
about the component densities is known. Choi and Bulgren [29] proposed an estimate
determined by a least-squares criterion in the spirit of the minimum-distance method of
Wolfowitz 154]. A variant of the method of [29] for which smaller bias and mean-square
error were reported was offered by Macdonald [96]. A method termed the "confusion
matrix method" was given by Odell and Chhikara 105] (see also the review of Odell and
Basu [104]). In this method, an estimate is obtained by subdividing R into disjoint
regions R, Rm and then solving the equation P& e, in which & is the estimated
vector of proportions, e is a vector whose ith component is the fraction of observations
falling in Ri, and the "confusion matrix" P has ijth entry

p(x qb)dx.

The confusion matrix method is a special case of a method of Macdonald [97], whose
formulation of the problem as a least-squares problem allows for a singular or rectangular
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confusion matrix. Related methods have been considered recently by Hall [66] and
Titterington 146]. Earlier, special cases of estimates of this type were considered by Boes
15], 16]. Guseman and Walton [60], [61 employed certain pattern recognition notions

and techniques to obtain numerically tractable confusion matrix proportion estimates for
mixtures of multivariate normal densities. James [80] studied several simple confusion
matrix proportion estimates for a mixture of two univariate normal densities. Ganesalin-
gam and McLachlan [52] compared the performance of confusion matrix proportion
estimates with maximum-likelihood proportion estimates for a mixture of two multi-
variate normal densities. Another approach to proportion estimation was taken by
Anderson [3], who proposed a fairly general method based on direct parametrization and
estimation of likelihood ratios. Finally, Walker [151] considered a mixture of two
essentially arbitrary multivariate densities and, assuming only that the means of the
component densities are known, suggested a simple procedure using linear maps which
yields unbiased proportion estimates.

A stochastic approximation algorithm for estimating the parameters in a mixture of
any number of univariate normal densities was offered by Young and Coraluppi 160]. In
such an algorithm, one determines a sequence of recursively updated estimates from a
sequence of observations of indeterminate length considered on a one-at-a-time or
few-at-a-time basis. Such an algorithm is likely to be appealing when a sample of desired
size is either unavailable in toto at any one point in time or unwieldy because of its size.
Stochastic approximation of mixture proportions alone was considered by Kazakos [86].

Quandt and Ramsey [118] derived a procedure called the moment generating
function method and applied it to the problem of estimating the parameters in a mixture
of two univariate normal densities and in a switching regression model. In brief, a moment
generating function estimate is a choice of parameters which minimizes a certain sum of
squares of differences between the theoretical and sample moment generating functions.
In a comment by Kiefer [89], it is pointed out that the moment generating function
method can be regarded as a natural generalization of the method of moments. Kiefer
[89] further offers an appealing heuristic explanation of the apparent superiority of
moment generating function estimates over moment estimates reported by Quandt and
Ramsey [118]. In a comment by Hosmer [77], evidence is presented that moment
generating function estimates may in fact perform better than maximum-likelihood
estimates in the small-sample case. However, Kumar et al. [91] attribute difficulties to
the moment generating function method, and they suggest another method based on the
characteristic function.

Minimum chi-square estimation is a general method of estimation which has been
touched on by a number of authors in connection with the mixture density estimation
problem, but which has not become the subject of much consideration in depth in this
context. In minimum chi-square estimation, one subdivides R" into cells R,, Rk and
seeks a choice of parameters which minimizes

xz(tI))
j=l Ej()

or some similar criterion function. In this expression, Nj and Ej() are, respectively, the
observed and expected numbers of observations in Rj for j 1, k. For mixtures of
normal densities, minimum chi-square estimates were mentioned by Hasselblad [70],
Cohen [32], Day [37] and Fryer and Robertson [50]. Minimum chi-square estimates of
proportions were reviewed by Odell and Basu [104] and included in the sensitivity study
of Tubbs and Coberly [147]. Macdonald [97] remarked that his weighted least-squares
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approach to proportion estimation suggested a convenient iterative method for computing
minimum chi-square estimates.

As a final note, we mention three methods which have been proposed for general
mixture density estimation problems. Choi [28] discussed the extension to general
mixture density estimation problems of the least-squares method of Choi and Bulgren
[29] for estimating proportions. Deely and Kruse [38] suggested an estimation procedure
which is in spirit like that of Choi and Bulgren [29] and Choi [28], except that a sup-norm
distance is used in place of the square integral norm. Deely and Kruse argued that their
procedure is computationally feasible, but no concrete examples or computation results
are given in [38]. Yakowitz [156], [157] outlined a very general "algorithm" for
constructing consistent estimates of the parameters in mixture densities which are

identifiable in the sense described in 2.5. of this review. The sense in which his
"algorithm" is really an algorithm in the usually understood meaning of the word is
discussed in 157].

2.4. The EM algorithm. At several points in the review, above, we have alluded to
computational difficulties associated with obtaining maximum-likelihood estimates. For
mixture density problems, these difficulties arise because of the complex dependence of
the likelihood function on the parameters to be estimated. The customary way of finding a
maximum-likelihood estimate is first to determine a system of equations called the
likelihood equations which are satisfied by the maximum-likelihood estimate, and then to
attempt to find the maximum-likelihood estimate by solving these likelihood equations.
The likelihood equations are usually found by differentiating the logarithm of the
likelihood function, setting the derivatives equal to zero, and perhaps performing some
additional algebraic manipulations. For mixture density problems, the likelihood equa-
tions are almost certain to be nonlinear and beyond hope of solution by analytic means.
Consequently, one must resort to seeking an approximate solution via some iterative
procedure.

There are, of course, many general iterative procedures which are suitable for finding
an approximate solution of the likelihood equations and which have been honed to a high
degree of sophistication within the optimization community. We have in mind here
principally Newton’s method, various quasi-Newton methods which are variants of it, and
conjugate gradient methods. In fact, the method of scoring, which was mentioned above in
connection with the work of Rao 119] and which we describe in detail in the sequel, falls
into the category of Newton-like methods and is one such method which is specifically
formulated for solving likelihood equations.

Our main interest here, however, is in a special iterative method which is unrelated to
the above methods and which has been applied to a wide variety of mixture problems over
the last fifteen or so years. Following the terminology of Dempster, Laird and Rubin [39],
we call this method the EM algorithm (E for "expectation" and M for "maximization").
As we mentioned in the introduction, it has been found in most instances to have the
advantage of reliable global convergence, low cost per iteration, economy of storage and
ease of programming, as well as a certain heuristic appeal; unfortunately, its convergence
can be maddeningly slow in simple problems which are often encountered in practice.

In the mixture density context, the EM algorithm has been derived and studied from
at least two distinct viewpoints by a number of authors, many of them working
independently. Hasselblad [70] obtained the EM algorithm for an arbitrary finite
mixture of univariate normal densities and made empirical observations about its
behavior. In an extension of [70], he further prescribed the algorithm for essentially
arbitrary finite mixtures of univariate densities from exponential families in [71]. The
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EM algorithm of [70] for univariate normal mixtures was given again by Behboodian [9],
while Day [37] and Wolfe [153] formulated it for, respectively, mixtures of two
multivariate normal densities with common covariance matrix and arbitrary finite
mixtures of multivariate normal densities. All of these authors apparently obtained the
EM algorithm independently, although Wolfe 153] referred to Hasselblad [70]. They all
derived the algorithm by setting the partial derivatives of the log-likelihood function equal
to zero and, after some algebraic manipulation, obtained equations which suggest the
algorithm.

Following these early derivations, the EM algorithm was applied by Tan and Chang
137] to a mixture problem in genetics and used by Hosmer [74] in the Monte Carlo study

of maximum likelihood estimates referred to earlier. Duda and Hart [46] cited the EM
algorithm for mixtures of multivariate normal densities and commented on its behavior in
practice. Hosmer [75] extended the EM algorithm for mixtures of two univariate normal
densities to include the partially labeled samples described briefly above. Hartley [69]
prescribed the EM algorithm for a "switching regression" model. Peters and Walker
[113] offered a local convergence analysis of the EM algorithm for mixtures of
multivariate normal densities and suggested modifications of the algorithm to accelerate
convergence. Peters and Coberly [112] studied the EM algorithm for approximating
maximum-likelihood estimates of the proportions in an essentially arbitrary mixture
density and gave a local convergence analysis of the algorithm. Peters and Walker [114]
extended the results of [112] to include subsets of mixture proportions and a local
convergence analysis along the lines of 113].

All of the above investigators regarded the EM algorithm as arising naturally from
the particular forms taken by the partial derivatives of the log-likelihood function. A quite
different point of view toward the algorithm was put forth by Dempster, Laird and Rubin
[39]. They interpreted the mixture density estimation problem as an estimation problem
involving incomplete data by regarding an unlabeled observations, on the mixture as
"missing" a label indicating its component population of origin. In doing so, they not only
related the mixture density problem to a broader class of statistical problems but also
showed that the EM algorithm for mixture density problems is really a specialization of a
more general algorithm (also called the EM algorithm in [39]) for approximating
maximum-likelihood estimates from incomplete data. As one sees in the sequel, this more
general EM algorithm is defined in such a way that it has certain desirable theoretical
properties by its very definition. Earlier, the EM algorithm was defined independently in
a very similar manner by Baum et al. [8] for very general mixture density estimation
problems, by Sundberg 135] for incomplete data problems involving exponential families
(and specifically including mixture problems), and by Haberman [62], [63], [64] for
mixture-related problems involving frequency tables derived by indirect observation.
Haberman also refers in [64] to versions of his algorithm developed by Ceppellini,
Siniscalco and Smith [21], Chen [27] and Goodman [54]. In addition, an interpretation
of mixture problems as incomplete data problems was given in the brief discussion of
mixtures by Orchard and Woodbury 106]. The desirable theoretical properties automat-
ically enjoyed by the EM algorithm suggest in turn the good global convergence behavior
of the algorithm which has been observed in practice by many investigators. Theorems
which essentially confirm this suggested behavior have been rcently obtained by Redner
[121], Vardi [149], Boyles [18] and Wu [155] and are outlined in the sequel.

2.5. Identifiability and information. To complete this review, we touch on two topics
which have to do with the general well-posedness of estimation problems rather than with
any particular method of estimation. The first topic, identifiability, addresses the



MIXTURE DENSITIES, MAXIMUM LIKELIHOOD, EM ALGORITHM 205

theoretical question of whether it is possible to uniquely estimate a parameter from a
sample, however large. The second topic, information, relates to the practical matter of
how good one can reasonably hope for an estimate to be. A thorough survey of these topics
is far beyond the scope of this review; we try to cover, below, those aspects of them which
have a specific bearing on the sequel.

In general, a parametric family of probability density functions is said to be
identifiable if distinct parameter values determine distinct members of the family. For
families of mixture densities, this general definition requires a special interpretation. For
the purposes of this paper, let us first say that a mixture density p (x ) of the form (1.1)
is economically represented if, for each pair of integers and j between and m, one has
that p;(x ) p(x ) for almost all x c R" (relative to the underlying measure on R"
appropriate for p (x )) only if either j or one of a; and aj is zero. Then it suffices to
say that a family of mixture densities of the form (1.1) is identifiable for c f if for each
pair ’ (a’, a,, ’, 4,) and " (a’(, , a,, 4’(, , 4,) in f
determining economically represented densities p(xl,b’) and p(xl’"), one has that
p(x ’) p(x [,I,") for almost all x R only if there is a permutation r of (1, m)
such that a a(; and, if a - 0, 4i 4(i for 1,. ., m. For a more general
definition suitable for possibly infinite mixture densities of the form (1.2), see, for
example, Yakowitz and Spragins 158].

It is tacitly assumed here that all families of mixture densities under consideration
are identifiable. One can easily determine the identifiability of specific mixture densities
using, for example, the identifiability characterization theorem of Yakowitz and Spragins
158]. For more on identifiability of mixture densities, the reader is referred to the papers

of Teicher [141], [142], [143], [144], Barndorff-Nielsen [6], Yakowitz and Spragins
[158], and Yakowitz [156], [157], and to the book by Maritz [99].

The Fisher information matrix is given by

(2.5.1) I() f. [V log p(x I,I,)] [v log p(x )] rp(xlb)dl.t,

provided that p(x[) is such that this expression is well defined. (In writing 7, we
suppose that one can conveniently redefine as a vector (,...,)r of
unconstrained scalar parameters, and we take 7 (0/01,..., O/Oli.,) r. Also, in
(2.5.1), u denotes the underlying measure on R appropriate for p(x[).) The Fisher
information matrix has general significance concerning the distribution of unbiased and
asymptotically unbiased estimates. For the present purposes, the importance of the Fisher
information matrix lies in its role in determining the asymptotic distribution of
maximum-likelihood estimates (see Theorem 3.1 below).

A number of authors have considered the Fisher information matrix for finite
mixture densities in a variety of contexts. We mention in particular several investigations
in which the Fisher information matrix is of central interest. (There have been others in
which the Fisher information matrix or some approximation of it has played a significant
but less prominent role; see those of Mendenhall and Hader 101 ], Hasselblad [70], [71 ],
Day [37], Wolfe [153], Dick and Bowden [43], Hosmer [74], James [80] and Ganesalin-
gam and McLachlan [52].) Hill [73] exploited simple approximations obtained in
limiting cases from a general power series expansion to investigate the Fisher information
for estimating the proportion in a mixture of two normal or exponential densities.
Behboodian [10] offered methods for computing the Fisher information matrix for the
proportion, means and variances in a mixture of two univariate normal densities; he also
provided four-place tables from which approximate information matrices for a variety of
parameter values can be easily obtained. In their comparison of moment and maximum-
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likelihood estimates, Tan and Chang [138] numerically evaluated the diagonal elements
of the inverse of the Fisher information matrix at a variety of parameter values for a
mixture of two univariate normal densities with a common variance. Using the Fisher
information matrix, Chang [23] investigated the effects of adding a second variable on
the asymptotic distribution of the maximum-likelihood estimates of the proportion and
parameters associated with the first variable in a mixture of two normal densities. Later,
Chang [24] extended the methods of [23] to include mixtures of two normal densities on
variables of arbitrary dimension. For a mixture of two univariate normal densities,
Hosmer and Dick [78] considered Fisher information matrices determined by a number
of sample types. They compared the. asymptotic relative efficiencies of estimates from
totally unlabeled samples, estimates from two types of partially labeled samples, and
estimates from two types of completely labeled samples.

3. Maximum likelihood. In this section, maximum-likelihood estimates for mixture
densities are defined precisely, and their important properties are discussed. It is assumed
that a parametric family of mixture densities of the form (1.1)is specified and that a
particular if* (a*, am, 4’, 4m*) C 2 is the "true" parameter value to be
estimated. As before, it is both natural and convenient to regard p(xl ) in (1.1) as
modeling a statistical population which is a mixture of m component populations with
associated component densities {Pi}i=l,...,m and mixing proportions {C;};=l,...,m.

In order to suggest to the reader the variety of samples which might arise in mixture
problems, as well as to provide a framework within which to discuss samples of interest in
the sequel, we introduce samples of observations in R of four distinct types. All of the
mixture density estimation problems which we have encountered in the literature involve
samples which are expressible as one or a stochastically independent union of samples of
these types, although the imaginative reader can probably think of samples for mixture
problems which cannot be so represented. The four types of samples and the notation
which we associate with them are given as follows:

Type 1. Suppose that {Xk}k=,...,N is an independent sample of N unlabeled observa-
tions on the mixture, i.e., a set of iV observations on independent, identically distributed
random variables with density p(x I,*). Then S {Xk}=,...,N is a sample of Type 1.

Type 2. Suppose that J, Jm are arbitrary nonnegative integers and that, for
1, m, {Yi}=,...,J; is an independent sample of observations on the ith component

population, i.e., a set of J,. observations on independent, identically distributed random
variables with density pi(xldPi*). Then $2 im= {Yik}k=l,...,J, is a sample of Type 2.

Type 3. Suppose that an independent sample ofK unlabeled observations is drawn on
the mixture, that these observations are subsequently labeled, and that, for
1, m,a set {z;k}=,...,, of them is associated with the ith component population with
K [;m= K,.. Then $3 t,_J m= {Z;}=,...,K; is a sample of Type 3.

Type 4. Suppose that an independent sample of M unlabeled observations is drawn
on the mixture, that the observations in the sample which fall in some set E

_
R are

subsequently labeled, and that, for 1, m, a set {w/.}=,...,M; of them is thereby
associated with the ith component population while a set {Wok}=,...,M0 remains unlabeled.
Then S U im=o {Wik}k=l,...,Mi is a sample of Type 4.

A totally unlabeled sample S of Type is the sort of sample considered in almost all
of the literature on mixture densities. Throughout most of the sequel, it is assumed as a
convenience that samples under consideration are of this type. The major qualitative
difference between completely labeled samples $2 and $3 of Types 2 and 3, respectively, is
that the numbers K,. contain information about the mixing proportions while the numbers
J; do not. Thus if estimation of proportions is of interest, then a sample $2 is useful only as



MIXTURE DENSITIES, MAXIMUM LIKELIHOOD, EM ALGORITHM 207

a subset of a larger sample which includes samples of other types. For mixtures of two
univariate densities, Hosmer [75] considered samples of the forms S1, $1 u $2, and S1 u
$3. Previously, Tan and Chang [137] considered a problem involving an application of
mixtures in explaining genetic variation which is almost identical to that of [75] in which
the sample is of the form S1 $2. Also Dick and Bowden [43] used a sample of the form
Sl uS2 in which m 2 and J2 0. Hosmer and Dick [78] evaluated the Fisher
information matrix for a variety of samples of Types 1, 2, and 3, and their unions.

A sample $4 of Type 4 is likely to be associated with a mixture problem involving
censored sampling. While the numbers M; contain information about the mixing
proportions, as do the numbers K; of a sample $3 of Type 3, they also contain information
about the parameters of the component densities while the numbers Ki. do not. An
interesting and informative example of how a sample of Type 4 might arise is the
following, which is in the area of life testing and is outlined by Mendenhall and Hader
[01].

Example 3.1. In life testing, one is interested in testing "products" (systems, devices,
etc.), recording failure times or causes, and hopefully thereby being better able to
understand and improve the performance of the product. It often happens that products of
a particular type fail as a result of two or more distinct causes. (An example of Acheson
and McElwee [1] is quoted in [101] in which the causes of electronic tube failureare
divided into gaseous defects, mechanical defects and normal deterioration of the cathode.)
It is therefore natural to regard collections of such products as mixture populations, the
component populations of which correspond to the distinct causes of failure. The. first
objective of life testing in such cases is likely to be estimation of the proportions and other
statistical parameters associated with the failure component populations.

Because of restrictions on time available for testing, life testing experiments must
often be concluded after a predetermined length of time has elapsed or after a predeter-
mined number of product units have failed, resulting in censored sampling. If the causes
of failure of the failed products are determined in the course of such an experiment, then
the (labeled) failed products together with those (unlabeled) products which did not fail
constitute a sample of Type 4.

The likelihood function of a sample of observations is the probability density
function of the random sample evaluated at the observations at hand. When maximum-
likelihood estimates are of interest, it is usually convenient to deal with the logarithm of
the likelihood function, called the log-likelihoodfunction, rather than with the likelihood
function itself. The following are the log-likelihood functions L1, L2, L and L4 of samples
$1, S_, $3 and $4 of Types 1, 2, 3, and 4 respectively:

N

(3.1) L,() =-’ log p(x,icb),
k=l

Ji

(3.2) L2(O) log p,(y,, 14i),
i=1 k=l

K!
(3.3) L3( log [cgiPi(Zik t])i)] + log

i=1 k=l KI!" Km!’

(3.4)
Mo

L4(I) log p(wo, lob) + log [oliPi(Wik t])i)] nt’- log
k=l i=1 k=l

M

Note that if a sample of observations is a union of independent samples of the .types
consider,ed here, then the log-likelihood function of the sample is just the corresponding
sum of log-likelihood functions defined above for the samples in the union.
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If S is a sample of observations of the sort under consideration, then by a
maximum-likelihood estimate of *, we mean any choice of in fl at which the
log-likelihood function of S, denoted by L(), attains its largest local maximum in ft. In
defining a maximum-likelihood estimate in this way, we have taken into account two
practical difficulties associated with maximum-likelihood estimation for mixture densi-
ties.

The first difficulty is that one cannot always in good conscience take fl to be a set in
which the log-likelihood function is bounded above, and so there are not always points in fl
at which L attains a global maximum over ft. Perhaps the most notorious mixture problem
for which L is not bounded above in fl is that in which p is a mixture of normal densities
and S S, a sample of Type 1. It is easily seen in this case that if one of the mixture
means coincides with a sample observation and if the corresponding variance tends to zero
(or if the corresponding covariance matrix tends in certain ways to a singular matrix in
the multivariate case), then the log-likelihood function increases without bound. This was
perhaps first observed by Kiefer and Wolfowitz [87], who offered an example involving a
mixture of two univariate normal densities to show that classically defined maximum-
likelihood estimates, i.e., global maximizers of the likelihood function, need not exist.
They also considered certain "modified" and "neighborhood" maximum-likelihood
estimates in [87] and pointed out that in their example the former cannot exist and the
latter are not consistent. For the normal mixture problem, an advantage of including
labeled observations in a sample is that, with probability one, this difficulty does not occur
if the sample includes more than n labeled observations from each component population.
This was observed in the univariate case by Hosmer [75]. Other methods of circumvent-
ing this difficulty in the normal mixture case include the imposition of constraints on the
variables (Hathaway [72]) or penalty terms on the log-likelihood function (Redner
[121]).

The second difficulty is that mixture problems are very often such that the
log-likelihood function attains its largest local maximum at several different choices of.
Indeed, if Pi and pj are of the same parametric family for some and j and if S S, a
sample of Type 1, then the value of L() will not change if the component pairs (a., .)
and (aj, ) are interchanged in , i.e., if in effect there is "label switching" of the ith and
jth component populations. The results reviewed below show that whether or not such
"label switching" is a cause for concern depends on whether estimates of the particular
component density parameters are of interest, or whether only an approximation of the
mixture density is desired. We remark that this "label switching" difficulty can certainly
occur in mixtures which are identifiable (see 2.5).

It should be mentioned that there is a problem relating to this second difficulty which
can be quite difficult to overcome in practice. The problem is that the log-likelihood
function can (and often does) have local maxima which are not largest local maxima.
Thus one must in practice decide whether to accept a given local maximum as the largest
or to go on to search for others. At the present time, there is little that can be done about
this problem, other than to find in one way or another asmany local maxima as is feasible
and to compare them to find the largest. There is currently no adequately ecient and
reliable way of systematically determining all local optima of a general function, although
work has been done toward this end and some algorithms have been developed which have
proved useful for some problems. For more information, see Dixon and Szeg [44].

In the remainder of this section, our interest is in the important general qualitative
properties of maximum-likelihood estimates of mixture density parameters. For conve-
nience, we restrict the discussion to the case which is most often addressed in the
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literature, namely, that in which the sample S at hand is a sample S of Type 1. We also
assume that each component density p. is differentiable with respect to and make the
nonessential assumption that the parameters are unconstrained in f and mutually
independent variables. It is not difficult to modify the discussion below to obtain similar
statements which are appropriate for other mixture density estimation problems of
interest. For a discussion of the properties of maximum-likelihood estimates of
constrained variables, see the papers of Aitchison and Silvey [2] and Hathaway [72].

The traditional general approach to determining a maximum-likelihood estimate is
first to arrive at a system of likelihood equations satisfied by the maximum-likelihood
estimate and then to try to obtain a maximum-likelihood estimate by solving the
likelihood equations. Basically, the likelihood equations are found by considering the
partial derivatives of the log-lkelihood function with respect to the components of . If
--(&,. ., &, ,. .,) is a maximum-likelihood estimate, then one has the
likelihood equations

(3.5) 7o, L() 0, 1, m,

determined by the unconstrained parameters ;, 1, m. (Our convention is that
"V" with a variable appearing as a subscript indicates the gradient of first partial
derivatives with respect to the components of the variable.)

To obtain likelihood equations determined by the proportions, which are constrained
to be nonegative and to sum to one, we follow Peters and Walker [114]. Setting &
(&, ,) T, one sees that

(3.6) 0 >_- VL()r(a )

for all a (c1, am)r such that ,.m_ ai and ai >-- 0, 1, m. Now (3.6)
holds for all a satisfying the given constraints if and only if

0 >_- V,L()r(e,- &), i= 1,. ., m,

with equality for those values of for which &; > 0. (Here, e; is the vector the ith
component of which is one and the other components of which are zero.) It follows that
(3.6) is equivalent to

pi(xk
(3.7) >=- 2--k_ p(xk]) 1,. m,

with equality for those values of for which &; > 0. Finally, multiplying each side of (3.7)
by ,. for l, m yields likelihood equations in the convenient form

(3.8) &’=’k-, p(xkl’) i= 1,. .,m.

We remark that it is easily seen by considering the matrix of second partial
derivatives of L with respect to c1, ., am that L is a concave function of c
(a, am)r for any fixed set of values ; f;, 1, m. Thus, for any fixed ;,

1, ., m, (3.6) and, hence, (3.7) are sufficient as well as necessary for & to
maximize L over the set of all a satisfying the given constraints. On the other hand, the
likelihooequations (3.8) are necessary but not sufficient conditions for & to maximize L
for fixed 4, 1, m. Indeed, & e satisfies (3.8) for 1, m. In fact, it
follows from the concavity of L that there is a solution of (3.8) in each (closed) face of the
simplex of points a satisfying the given constraints. In spite of perhaps suffering from a
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surplus of solutions, the likelihood equations (3.8) nevertheless have a useful form which
takes on additional significance later in the context of the EM algorithm.

The equations (3.5) and (3.8) together constitute a full set of likelihood equations
which are necessary but not sufficient conditions for a maximum likelihood estimate. Of
course, some irrelevant solutions of the likelihood equations can be avoided in practice by
Using one of a number of procedures for obtaining a numerical solution of them (among
which is the EM algorithm) which in all but the most unfortunate circumstances will yield
a local maximizer of the log-likelihood function (or a singularity near which it grows
without bound) rather than some stationary point which is a local minimizer or a saddle
point. Still, it is natural to ask at this point the extent to which solving the likelihood
equations can be expected to produce a maximum-likelihood estimate and the extent to
which a maximum-likelihood estimate can be expected to be a good approximation of I,*.

Two general theorems are offered below which give a fair summary of the results in
the literature most pertinent to the question put forth above. As a convenience, we assume
that a,.* > 0 for 1,. ., m. For the purposes of the theorems and the discussion
following them, this justifies writing, say, a ;1 ai and considering the
redefined, locally unconstrained variable (a, am-l, 4, 4m) in the
modified set

- al, am-l, (])1, m)" a < and a > 0, (])i C ’i for 1, rn
i=l

The likelihood equations (3.5) and (3.8) can now be written in the general unconstrained
form

(3.9) VL() 0,

which facilitates our presenting the theorems as general results which are not restricted to
the mixture problem at hand or, for that matter, to mixture problems at all. In our
discussion of the theorems, all statements regarding measure and integration are made
with respect to the underlying measure on R" appropriate for p(xl), which we denote
by t.

The first theorem states roughly that, under reasonable assumptions, there is a
unique strongly consistent solution of the likelihood equations (3.9), and this solution at
least locally maximizes the log-likelihood function and is asymptotically normally
distributed. (Consistent in the usual sense means converging with probability approach-
ing to the true parameters as the sample size approaches infinity; strongly consistent
means having the same limit with probability .) This theorem is a compendium of results
generalizing the initial work of Cram6r [36] concerning existence, consistency and
asymptotic normality of the maximum-likelihood estimate of a single scalar parameter..
The conditions below, on which the theorem rests, were essentially given by Chanda [22]
as multidimensional generalizations of those of Cram6r. With them, Chanda claimed that
there exists a unique solution of the likelihood equations which is consistent in the usual
sense (this fact was correctly proved by Tarone and Gruenhage 139]) and established its
asymptotic normal behavior. (See also the summary in Kiefer [88], the discussion in
Zacks [161], Sundberg’s [134] treatment in the case of incomplete data from an
exponential family, and the related material for constrained maximum-likelihood esti-
mates in Aitchison and Silvey [2] and Hathaway [72].) Using these same conditions,
Peters and Walker [113, Appendix A] showed that there is a unique strongly consistent
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solution of the likelihood equations, and that it at least locally maximizes the log-
likelihood function.

In stating the following conditions and in the discussion after the theorem, it is
convenient to adopt temporarily the notation (l, v), where v (m +
-,.m__ hi) and i c R for 1, v. Also, we remark that because the results of the
theorem below implied by these conditions are strictly local in nature, there is no loss of
generality in restricting f to be any neighborhood of * if such a restriction is necessary
for the first condition to be met.

Condition 1. For all cft, for almost all x R" and for i, j, k 1, v, the
partial derivatives Op/Oi, 02p/OiOj and 03p/OiOjOk exist and satisfy

<=f(x),
op(x (R))

f,.(x),
0 log

=<(x),

wheref andfj are integrable andfyk satisfies

,f(x)p(xl*)d < .
Condition 2. The Fisher information matrix I(I,) given by (2.5.1) is well defined and

positive definite at *.
THEOREM 3.1. If Conditions and 2 are satisfied and any sufficiently small

neighborhood ofrb* in f is given, then with probability l, there isfor sufficiently large N
a unique solution bv of the likelihood equations (3.9) in that neighborhood, and this
solution locally maximizes the log-likelihoodfunction. Furthermore, x/-(bv b*) is
asymptotically normally distributed with mean zero and covariance matrix I(b*)-l.

The second theorem is directed toward two questions left unresolved by the theorem
above regarding CN, the unique strongly consistent solution of the likelihood equations.
The first question is whether CN is really a maximum-likelihood estimate, i.e., a point at
which the log-likelihood function attains its largest local maximum. The second is
whether, even if the answer to the first question is "yes," there are maximum-likelihood
estimates other than which lead to limiting densities other than p(xl4o*). Given our
assumption of identifiability of the family of mixture densities p(xlrb), b 2, one easily
sees that the theorem below implies that if ft’ is any compact subset of f which contains *
in its interior, then with probability 1, is a maximum-likelihood estimate in ft’ for
sufficiently large N. Furthermore, every other maximum-likelihood estimate in f’ is
obtained from by the "label switching" described earlier and, hence, leads to the same
limiting density p(x b*). Accordingly, we usually assume in the sequel that Conditions
through 4 are satisfied and refer to I,N as the unique strongly consistent maximum-
likelihood estimate. The theorem is a slightly restricted version of a general result of
Redner [122] which extends earlier work by Wald [150] on the consistency of
maximum-likelihood estimates. It should be remarked that the result of [122] rests on
somewhat weaker assumptions than those made here and is specifically aimed at families
of distributions which are not identifiable.

For ,I f and sufficiently small r > 0, let ]Vr(rb denote the closed ball of radius r
about (I, in f and define

p(xl,r) sup p(xl’I")
,:I,’ 5 N,.(,I,)
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and
p*(x I,I,, r) max {1, p(xl, r)}.

Condition 3. For each c ft and sufficiently small r > 0,

f log p* (xlb*, r)p(x]*) du <

Condition 4.

f, log p(x b* p(x b* du < .
THEOREM 3.2. Let f’ be any compact subset of which contains b* in its interior,

and set

C { ’: p(x]) p(xl*) almost everywhere}.

If Conditions 3 and 4 are satisfied and D is any closed subset of’ not intersecting C,
then with probability 1,

N

p(xlO)
k=l

lim sup u 0.

k-I

From a theoretical point of vie, Theorems 3.1 and 3.2 are adequate for mixture
density estimation problems in providing assurance of the existence of strongly consistent
maximum-likelihood estimates, characterizing them as solutions of the likelihood equa-
tions and prescribing their asymptotic behavior. In practice, however, one must still
contend with certain potential mathematical, statistical and even numerical difficulties
associated with maximum-likelihood estimates. Some possible mathematical problems
have been suggested above: The log-likelihood Nnction may have many local and global
maxima and perhaps even singularities; Nrthermore, the likelihood equations are likely to
have solutions which are not local maxima of the log-likelihood Nnction. According to
Theorem 3.1, the statistical soundness (as measured by bias and variance) of the strongly
consistent maximum-likelihood estimate is determined, at least for large samples, by the
Fisher information matrix I(O*). As it happens, I(O*) also plays a role in determining
the numerical well-posedness of the problem of approximating the strongly consistent
maximum-likelihood.estimate for large samples.

To show how I(O*) enters into the problem of numerically approximating u for
large samples, we recall that the condition of a problem refers to the nonuniformity of
response of its solution to perturbations in the data associated with the problem. This is to
say that a problem is ill-conditioned if its solution is very sensitive to some perturbations
in the data while being relatively insensitive to others. Another way of looking at it is to
say that a problem is ill-conditioned if some relatively widely differing approximate
solutions give about the same fit to the data, which may be very good. For maximum-
likelihood estimation, then, one can associate ill-conditioning with the log-likelihood
Nnction’s having a "narrow ridge" below which the maximum-likelihood estimate lies, a
phenomenon often observed in the mixture density case. If a problem is ill-conditioned,
then the accuracy to which its solution can be computed is likely to be limited, sometimes
sharply so. Indeed, in some contexts one can demonstrate this rigorously through
backward error analysis in which it is shown that the computed solution of a problem is
the exact solution of a "nearby" problem with perturbed data.
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For an optimization problem, the condition is customarily measured by the condition
number of the Hessian matrix of the function to be optimized, evaluated at the solution.
Denoting the Hessian by H() and assuming that it is invertible, we recall that its
condition number is defined to be Iln(+)ll. Iln(+)- ll, where II. is a matrix norm of
interest. (For more on the condition number of a matrix, see, for example, Stewart 131 ].)
For the log-likelihood function at hand, the Hessian is given by

N

(3.10) H() VVr log p(x ),
k=l

where XTXTr (02/0;0j). If Conditions and 2 above are satisfied, then it follows from
the strong law of large numbers (see Lo6ve [94]) that, with probability 1,

(3.11) lim /H((I’N) I(+* ).
N-’--*o

Since 1/NH(bN) has the same condition number as H(N), (3.11) demonstrates that the
condition number of I(*) reflects the limits of accuracy which one can expect in
computed approximations ofN for large N.

To illustrate the potential severity of the statistical and numerical problems
associated with maximum-likelihood estimates, we augment the material on the Fisher
information matrix in the literature cited in 2.5 with Table 3.3 below, which lists
approximate values of the condition number and the diagonal elements of the inverse of
I(*) for a mixture of two univariate normal densities (see (1.3) and (1.4)) at a variety of
choices of *. To prepare this table, we took I, (al, #1, 2, O’12, 0"22) and numerically
evaluated I(*), its condition number, and its inverse for selected values of * using
IMSL Library routines DCADRE, EIGRS, and LINV2P on a CDC7600. The choices of

* were obtained by taking a* .3 and 0"12* 0"22* and varying the mean separation
#* #2*. In the table, the condition number of I(*) is denoted by K, and the first through
fifth diagonal elements of I(*) -1 are denoted by I-l(Otl), I-(#1), I-1(#2), I-1(0") and
I-1 (0"2), respectively.

Table 3.3 reinforces one’s intuitive understanding that, for mixture density estima-
tion problems, maximum-likelihood estimates are more appealing, from both statistical
and numerical standpoints, if the component densities in the mixture are well separated
than if they are poorly separated. Perhaps the most troublesome implication of Table 3.3
is that, if the component densities are poorly separated, then impractically large sample
sizes might be required in order to expect even moderately precise maximum-likelihood
estimates. For example, Table 3.3 indicates that if one considers data from a mixture of
two univariate normal densities with a* .3, 0"2. 0"2. and #* #2* 1, then a
sample size on the order of 106 is necessary to insure that the standard deviation of each
component of the maximum-likelihood estimate is about 0.1 or less. Even if a sample of
such horrendous size were available, the fact that evaluating the log-likelihood function
and associated functions such as its derivatives involves summation over observations in
the sample, considered together with the condition number of 5.18 x 10 for the
information matrix, suggests that the computing undertaken in seeking.a maximum-
likelihood estimate should be carried out with great care.

Similar observations regarding the asymptotic dependence of the accuracy of
maximum-likelihood estimates on sample sizes and separation of the component popula-
tions have been made by a number of authors (Mendenhall and Hader [101], Hill [73],

2We are grateful to the Mathematics and Statistics Division of the Lawrence Livermore National
Laboratory for allowing us to use their computing facility in generating Table 3.3.
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TABLE 3.3
Condition number and diagonal elements ofthe inverse ofIOb*) for a mixture oftwo univariate normal

densities with al* .3, try* trE 1.

0.2

0.5

1.0

1.5

2.0

3.0

4.0

6.0

3.06 x 10

8.05 x 10

5.18 x 104

4.80 x 10

1.10 10

187.

71.7

35.7

I-’(a,)

4.39 x 1010

5.54 10

8.59 103

237.

20.4

.874

.267

.211

I-1 (/.tl)

4.86 x 10

3.81 x 106

2.32 x 104

1.43 10

216.

18.9

5.72

3.44

I-’(#2)

8.98 x 108

7.17 105

4.55 x 103

290.

45.8

4.81

1.95

1.45

I-’ (try)

2.15 107

1.04 x 105

2.58 x 103

383.

115.

28.2

13.4

7.47

I-’ (tr22

4.02 10

2.07 x 10

578.

95.0

31.3

8.83

4.71

3.06

Hasselblad [70], [71], Day [37], Tan and Chang [138], Dick and Bowden [43], Hosmer
[74], [75], Hosmer and Dick [78]). Several of them (Mendenhall and Hader [101], Day
[37], Hasselblad [71], Dick and Bowden [43], Hosmer [74]) also suggested that things
are worse for small samples (less than a few hundred observations) than the asymptotic
theory indicates. Hosmer [74] specifically addressed the small-sample, poor-separation
case for a mixture of two univariate normals and concluded that in this case maximum-
likelihood estimates "should be used with extreme caution or not at all." Dick and
Bowden [43], Hosmer [75] and Hosmer and Dick [78] offered evidence which suggests
that considerable improvement in the performance of maximum-likelihood estimates can
result from including labeled observations in the samples by which the estimates are
determined, particularly when the component densities are poorly separated. In fact, it is
pointed out in [78] that most of the improvement occurs for small to moderate proportions
of labeled observations in the sample.

In spite of the rather pessimistic comments above, maximum-likelihood estimates
have fared well in comparisons with most other estimates for mixture density estimation
problems. Day [37], Hasselblad [71], Tan and Chang [138] and Dick and Bowden [43]
found maximum-likelihood estimates to be markedly superior to moment estimates in
their investigations, especially in cases involving poorly separated component populations.
(See also the comment by Hosmer [77] on the paper of Quandt and Ramsey 118].) Day
[37] also remarked that minimum chi-square and Bayes estimates have less appeal than
maximum-likelihood estimates, primarily because of the difficulty of obtaining them in
most cases. James [80] and Ganesalingam and McLachlan [52] observed that their
proportion estimates are less efficient than maximum-likelihood estimates; however, they
also outlined circumstances in which their estimates might be preferred. On the other
hand, as we remarked in 2.3, Hosmer [77] has commented that the moment generating
function method of Quandt and Ramsey 118] provides estimates which may outperform
maximum-likelihood estimates in the small-sample case, although Kumar et al. [91]
attribute certain difficulties to this method.

4. The EM algorithm. We now derive the EM algorithm for general mixture density
estimation problems and discuss its important general properties. As stated in the
introduction, we feel that the EM algorithm for mixture density estimation problems is
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best regarded as a specialization of the general EM algorithm formalized by Dempster,
Laird and Rubin [39] for obtaining maximum-likelihood estimates from incomplete data.
Accordingly, we begin by reviewing the formulation of the general EM algorithm given in
[39].

Suppose that one has a measure space J of "complete data" and a measurable map
y x(y) of to a measure space 9 of "incomplete data." Letf(y ) be .a member of a
parametric family of probability density functions defined on J for ft, and suppose
that g(x ) is a probability density function on 9 induced byf(y ). For a given x 96,
the purpose of the EM algorithm is to maximize the incomplete data log-likelihood
L() log g(x ) over f by exploiting the relationship betweenf(y I,) and g(x ).
It is intended especially for applications in which the maximization of the complete data
log-likelihood logf(y ) over I, cft is particularly easy.

For x c 9, set 2(x)= {y J: x(y)= x}. The conditional density k(y Ix, ) on
(x) is given byf(y ) k(y x, )g(x ). For and ’ in 2, one then has

L(,I,) Q(,I, ,’) H(,I, ,’),

where Q(,I,I,I,’) E(logf(yl)lx, ,I,’) and H(,b I,I,’) E(log k(ylx, )lx, I,’). The
general EM algorithm of Dempster, Laird and Rubin [39] is the following: Given a
current approximation c of a maximizer of L(), obtain a next approximation + as
follows:

1. E-step. Determine Q(,I, I,I,).
2. M-step. Choose + arg max(R) Q( I,I,).

Here, arg max.e Q(,lbc) denotes the set of values 2 which maximize Q( c) over
f. (Of course, this set must be nonempty for the M-step of the algorithm to be well
defined.) If this set is a singleton, then we denote its sole member in the same way and
write + arg max.e Q(,I, I,I,). Similar notation is used without further explanation in
the sequel.

From this general description, it is not clear that the EM algorithm even deserves to
be called an algorithm. However, as we indicated above, the EM algorithm is used most
often in applications which permit the easy maximization of logf(y ) over f. In
such applications, the M-step maximization of Q( if’) over ff c f is usually carried out
with corresponding ease. In fact, as one sees in the sequel, the E-step and the M-step are
usually combined into one very easily implemented step in most applications involving
mixture density estimation problems. At any rate, the sense of the EM algorithm lies in
the fact that L(+) >_- L(,V). Indeed, the manner in which + is determined guarantees
that Q(,I,+I,I,) >_-Q(l,I,C); and it follows from Jensen’s inequality that
H(,I,+ I,I,) -<_ H(,I,C ,I,). (See Dempster, Laird and Rubin [39, Thin. ].) This fact implies
that L is monotone increasing on any iteration sequence generated by the EM algorithm,
which is the fundamental property of the algorithm underlying the convergence theorems
given below.

To discuss the EM algorithm for mixture density estimation problems, we assume as
in the preceding section that a parametric family of mixture densities of the form (1.1) is
specified and that a particular I,* (a*, am*, 4*, 4m*) is the "true" parame-
ter value to be estimated. In the usual way, we regard this family of densities as being
associated with a statistical population which is a mixture of m component populations.
The EM algorithm for a mixture density estimation problem associated with this family is
derived by first interpreting the’ problem as one involving incomplete data and then
obtaining the algorithm from its general formulation given above. The problem is
interpreted as one involving incomplete data by regarding each unlabeled observation in
the sample at hand as "missing" a label indicating its component population of origin.
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It is instructive to consider the forms which the EM algorithm might take for mixture
density estimation problems involving samples of the types introduced in the preceding
section. We first illustrate in some detail the derivation of the function Q(,I, I,I,’) of the
E-step of the algorithm, assuming for convenience that the sample at hand is a sample
S {Xk}k-...N of Type described in the preceding section. One can regard S as a
sample of incomplete data by considering each xk to be the "known" part of an
observation Yk (X,, ik), where ik is an integer between and rn indicating the component
population of origin. For (a, am, 4, 4m) C ft, the sample variables
x (x, , xN) and y (y, yz) have associated probability density functions
g(x I,I,) IIU__ p(x I,I,) and f(y I’I’) IIL % pi(XklPik), respectively. Then for ’(a’, a,, 4/, 4,) c fl, the conditional density k(y x, ’) is given by

Pik(Xkk(y x, ’) II
,= p(xl’)

and the function Q( ’), which we denote by Q( ’), is determined to be

(4.1)

N N

Q,( ’) - log ai p,(x, I;) II ’’ pi(Xk Ci)
;,= ;= = = p(x[’I")

N

log otiPi(X

otiPi(Xk_ _
p(x ’’)

N

log O/i -- E E log pi(Xk dpi) otiPi(Xk..tI.r.q)

For samplesS2 =, {yik}k=l,...j,,S3 U?=I {Zik}k=l,...,Ki andS4 ’-0 {wiklk=l,...,Mi
of Types 2, 3 and 4, one determines in a similar manner the respective functions Q2(o ’),
Q3(O ’) and Q4(O ’) for the E-step of the EM algorithm to be

Ji

(4.2) Q2(’I’ ’) log Pi(Y,k 14),),
i=l

(4.3)

(4.4)

K

Q3(,I, ’) Ki log O -- E E log pi(z,, qi),
i,=l i=1 k=l

Q4(I’)
i=1

Mo a;pi(Wok ch)
p(wo ’)

for (a, a,, 4, (])m) and ’ (a’l, a,, ’, 4,) in ft. We note
that a2(’I’ I’I") and Q3( ’) are just L2(4) and (except for an additive constant) L3(<I)
given by (3.2) and (3.3), respectively; and one might well wonder why they are of interest
in this context. By way of explanation, we observe that if a sample of interest is a
stochastically independent union of smaller samples, then the function for the E-step of
the EM algorithm which is appropriate for this sample is just the sum of the functions
which are appropriate for the smaller samples. Thus, for example, if S S U S 1,3 S3 is a
union of independent samples of Types 1, 2, and 3, then the function for the E-step
appropriate for S is 061,1,I,’) O(,I,[,I,’) + O(,I,[,I,’) / O3([’), where O(,I,[,I,’),
Q(,I, ,I,’) and Q3(4 (I,’) are given by (4.1), (4.2) and (4.3), respectively.

Having determined an appropriate function Q(,I,I,I,’) for the E-step of the EM
algorithm as one or a sum of the functions Q(,I, I,I,’) defined above, one is likely to find
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that the maximization problem of the M-step has a number of attractive features. It is
clear from (4.1), (4.2), (4.3) and (4.4) that this maximization problem separates into two
maximization problems, the first involving the proportions al," ,, am alone and the
second involving only the remaining parameters 41, m. Since log al, log am
appear linearly in each function Qi( ’) for 2, the first maximization problem has a
unique solution if the sample is not strictly of Type 2, and this solution is easily and
explicitly determined regardless of the functional forms of the component densities
pi(x 4). If, qm are mutually independent variables, then the second maximiza-
tion problem separates further into m component problems, each of which involves only
one of the parameters 4. Both these component problems and the maximization problem
for the proportions alone have the appealing property that they can be regarded as
"weighted" maximum-likelihood estimation problems involving sums of logarithms
weighted by posterior probabilities that sample observations belong to appropriate
component populations, given the current approximate maximum-likelihood estimate of
*.

To illustrate these remarks, we consider a sample S {Xk}k-l....,U of Type and
assume that 4,’’’,4m are mutually independent variables. If c (a, -..,
am, 4, ", 4,) is a current approximate maximizer of the log-likelihood function
L() given by (3.1), then one easily verifies that the next approximate maximizer +

+(a, am, 4-, 4+m) prescribed by the M-step of the EM algorithm satisfies

(4.5)
api(xk Ici)all- - k,=l p(Xk bc)

N ,, p,(x, 14,,)
(4.6) 4,.+ arg max log

,,-, = p(x, ’bc)

for 1, ,m. Note that each weight is the posterior
probability that Xk originated in the ith component population, given the current
approximate maximum-likelihood estimate c.

In addition to prescribing each a{ and 4 as the solution of a heuristically appealing
weighted maximum-likelihood estimation problem, there are other attractions to (4.5)
and (4.6). For example, (4.5) insures that the next approximate proportions a/+ inherit
from the current approximate proportions a the property of being nonnegative and
summing to 1. Furthermore, although there is no guarantee that the maximization
problems (4.6) will have nice properties in general, it happens that each is usually
easily (even uniquely and explicitly) determined by (4.6) in most applications of interest,
especially in those applications in which each component density p(xl) is one of the
common parametric densities for which ordinary (labeled-sample) maximum-likelihood
estimates of 4i are uniquely and explicitly determined. As an illustration, consider the
case in which some pg(x[4g) is a multivariate normal density, i.e., pi(x[4;) and 4g are
given by

-l/2(x-#i)rzi-’Cx-#i) i (i, Zi),(4.7) p,(xlck,) (2r),/_(det ,11/2
e

where #; R" and E is a positive-definite symmetric n x n matrix. For a given 4
(#, Z), the unique solution 4+ (#,.+, Z+) of (4.6) is given by

(4.8)
p(Xk c) k,=l p(Xk c) J’
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(4.9)
k=l p(xk 10 k=l p(xk tc

(The factors a have been left in the numerators and denominators of these expressions for
aesthetic reasons only.) Note that 2,.+ is positive-definite symmetric with probability if
N>n.

What convergence properties hold for a sequence of iterates generated by applying
the EM algorithm to a mixture density estimation problem? If nothing in particular is
said about the parametric family of interest, then the properties which can be specified
are essentially those obtained by specializing the convergence results associated with the
EM algorithm for general incomplete data problems. The convergence results below are
formulated so that they are valid for the EM algorithm in general. Points relating to these
results which are of particular interest in the mixture density context are made in remarks
following the theorems.

The first theorem is a global convergence result for sequences generated by the EM
algorithm. It essentially summarizes the results of Wu [155] for the general EM
algorithm and of Redner 121 for the more specialized case of the EM algorithm applied
to a mixture of densities from exponential families. Similar but more restrictive results
have been formulated for the general EM algorithm by Boyles [18] and for a special
application of the EM algorithm by Vardi [149]. Statements (i), (ii) and (iii) of the
theorem are valid for any sequence and are stated here as a convenience because of their
usefulness in applications. Statements (iv), (v) and (vi) are based on the fact reviewed
earlier and reiterated in the statement of the theorem that the log-likelihood function
increases monotonically on a sequence generated by the EM algorithm. Through the use
of this fact, the theorem can be related to general results in optimization theory such as
the convergence theorems of Zangwill [162, pp. 91, 128, 232] concerning point-to-set
maps which increase an objective function. In fact, such general results were used
explicitly by Wu [155] and Vardi [149].

THEOREM 4.1. Suppose that for some () c f, {(I)(J)}j=0,1,2,... is a sequence in f
generated by the EM algorithm, i.e., a sequence in satisfying

(I)(j+l) C arg max Q(o I,I), j= 0, 1,2, .,

where Q (010’) is thefunction determined in the E-step of the EM algorithm. Then the
log-likelihood function L(O) increases monotonically on {O(J)}j=0,1,2,... to a (possibly
infinite) limit L*. Furthermore, denoting the set oflimit points of{O(J)}j=0,1.2,.., in f by .,
one has thefollowing:

(i) A is a closed set in f.
(ii) If{O()}=o,1,2,... is contained in a compact subset offt, then Z. is compact.
(iii) lf{O(J)}=o,,,2,.., is contained in a compact subset off and limj_

Ofor a norm I1" on , then Z. is connected as well as compact.
(iv) (f L(O) is continuous in and Z. a, then L* is finite and L() L* for

(v) If Q(O o’) and H(010’) Q(010’) L(O) are continuous in and 0’ in 2,
then each satisfies arg maxima Q(O ’).

(vi) If Q(010’) and H(O O’) are continuous in and 0’ in f and differentiable in
at 0’ Z., then L(O) is differentiable at and the likelihood

equations V,L(O) 0 are satisfied by 0.
Proof The monotonicity of L(O) on {O(J)}j=0,,_,... has already been established; the



MIXTURE DENSITIES, MAXIMUM LIKELIHOOD, EM ALGORITHM 219

existence of a (possibly infinite) limit L* follows. Statement (i) holds since closedness is a
general property of sets of limit points. To obtain (ii), note that if {,I)<J)}j=0,1,2,... is contained
in a compact subset of ft, then is a closed subset of this compact subset and, hence,
is compact. To prove (iii), suppose that {+<J)}j=0,1,2,... is contained in a compact sub-
set of ft, that limj_. 114,J+l) (I,) 0, and that is not connected. Since . is com-
pact, there is a minimal distance between distinct components of ., and the fact that
limj__. I1(I,(+1) (I)(J)ll 0 implies that there is an infinite subsequence of {(I)()}j=0,1,2,.
whose members are bounded away from . This subsequence lies in a compact set, and so
it has limit points. Since these limit points cannot be in , one has a contradiction.

Statement (iv) follows immediately from the monotonicity of L(,I,) on {,I,)}=o,,,....
To prove (v), suppose that Q( ’) and H( ’I,’) are continuous in and ’ in 2 and that
one can find some c and cI, cft for which Q( ) > Q( ). Then for every j,

L(+(j+l)) Q(+</+t) I+</>) H(+(J+l)ldp(J) > Q(+ +</)) H(+</) +</)

by the M-step determination of <b<J+t> and Jensen’s inequality. Since Q((I)](I)’) and
H((I, (I,’) are continuous, it follows by taking limits along a subsequence converging to )
that

L* >= Q(’I’ &) H( [() > Q(’ I’b) H(’ &) L(&) L*,

which is a contradiction. To establish (vi), suppose that Q(+I+’) and H(I,I,’) are
continuous in and ’ in ft and differentiable in at ’ , .. Then L()
Q( ) H(,I, ) is differentiable at I, , and, since , arg max(R)n O( ) by (v)
and , arg max(R) H( ,i,) by Jensen’s inequality, one has 7+L(,) 0. This completes
the proof.

Statement (iii) of Theorem 4.1 has precedent in such results as Ostrowski 108, Thm.
28.1]. It is usually satisifed in practice, especially in the mixture density context. Indeed,
it often happens that each I, + is uniquely determined by the EM algorithm as a function of

+c which is continuous in ft. For example, one sees that a(, o are determined in
this way by (4.5) whenever each pi(xlep;) depends continuously on 4);. In addition, each. qS;
is likely to be determined in this way by (4.6) whenever each p(xl4) is one of the
common parametric densities for which ordinary maximum-likelihood estimates are
determined as a continuous function of 4)i; see, for example, (4.8) and (4.9). If + is
determined in this way from and if the conditions of (v) are also satisfied, then each
( is a fixed point of a continuous function. It follows that if in addition {(I)(J)}j=0,1,2,... is
contained in a compact subset of ft, then the elements of a "tail" sequence
can all be made to lie arbitrarily close to the compact set . by taking J sufficiently large
and, hence, lim_+ I(I)(J+l) (i,() 0 by the uniform continuity near of the function
determining +<+ 1) from

It is useful to expand a little on the interpretation of statement (vi) in the mixture
density context. Assuming that each p,.(x 4);) is differentiable with respect to 4);, that the
parameters 4); are unconstrained in fti and mutually independent, and, for convenience,
that the sample of interest is of Type 1, one can reasonably interpret the likelihood
equations XT+L((I,) 0 in the sense of (3.9) at a point ( (&l, &m, 4)1, )m)

which is such that each &; is positive. Now it is certainly possible for some &i to be zero
for ( , in which case (3.9) might not be valid. Fortunately, (3.5) and (3.8) provide a
better interpretation than (3.9) of the likelihood equations in the mixture density context,
which is valid whether each &i is positive or not. Indeed, if the conditions of (v) hold, then
it follows from (4.5) that the equations (3.8) are satisfied on . Thus in the mixture
density context under the present assumptions, (vi) should be replaced with the following"

(vi)’ If Q(I, ’) and H( 1’) are continuous in b and b’ in ft and differentiable in
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Chl, oh,, at b b’ c ,, then L() is differentiab le in Chl, tm at b and
the likelihood equations (3.5) and (3.8) are satisfied by

To illustrate the application of Theorem 4.1, we consider the problem of estimating
the proportions in a mixture under the assumption that each component density Pi (x[4i)
is known (and denoted for the present purposes by pi(x) for simplicity). The theorem
below is a global convergence result for the EM algorithm applied to this problem. For
convenience in presenting the theorem, it is assumed that the sample at hand is a sample
St {Xk}k_l,...,u of Type 1. Similar results hold for other cases in which the sample at hand
is one or a union of the types considered in the preceding section. For this problem, one has
simply (al, am); and it is, of course, always understood that im=l O and
ai >-- 0, 1, , m, for all such . We remark that the condition of the theorem on the
matrix of second derivatives of Ll() is quite reasonable. This matrix is always defined
and negative semidefinite whenever p(xl,I,) 0 for k 1,... ,N; and if
pl(X), pm(X) are linearly independent nonvanishing functions on the support of the
underlying measure on R" appropriate for p, then with probability it is defined and
negative definite for all whenever N is sufficiently large.

THEOREM 4.2. Suppose that the matrix ofsecond derivatives ofL1 () is defined and
negative definitefor all . Then there is a unique maximum-likelihood estimate, andfor
any o)= (alo), ", a)) with a)> 0 for i= 1, ., m, the sequence

a)) }j-o,l,2,... generated by the EM algorithm, i.e., determined inductively by

a}j+)
otJ)pi(Xk)

1, m,
N p(x I,I,))

converges to the maximum-likelihood estimate.

Proof It follows from Theorem 4.1 and the subsequent remarks that the set of limit
points of {<J)}j=0,1,.,... is a compact, connected subset of the simplex of proportion vectors

on which the likelihood equations (3.8) are satisfied. Since the matrix of second
derivatives of L () is negative definite, L1 () is strictly concave. It follows that there is a
unique maximum-likelihood estimate and, furthermore, that the likelihood equations
(3.8) have at most one solution on the interior of each face of the proportion simplex.
Consequently, each component of the set of solutions of the likelihood equations consists
of a single point, and {OJ)}j=0,1,2,... must converge to one such point. But if {(J)}j=0,1,2,... is
convergent, then its limit must be the maximum-likelihood estimate by Peters and
Coberly 112, Thm. 2] or Peters and Walker 114, Thm. ].

Despite the usefulness of Theorem 4.1 in characterizing the set of limit points of an
iteration sequence generated by the EM algorithm, it leaves unanswered the questions of
whether such a sequence converges at all and, if it does, whether it converges to a
maximum-likelihood estimate. In an attempt to provide reasonable sufficient conditions
under which the answer to these questions is "yes", we offer the local convergence
theorem below.

THEOREM 4.3. Suppose that Conditions through 4 of3 are satisfied in f, and let

’ be a compact subset of which contains b* in its interior and which is such that
p(x ) p(x *) almost everywhere in x for b f’ only if b b*. Suppose further
that with probability 1, the function Q( I,I,’) of the E-step of the EM algorithm is
continuous in and ’ in f’ and both Q(,I, I,I,’) and the log-likelihoodfunction L() are

differentiable in for b and b’ in f’ whenever N is sufficiently large. Finally, for b) in

’ denote by {I,)}=0,1,2,... a sequence generated by the EM algorithm in f’, i.e., a
sequence in f’ satisfying

(I)(j+l) arg max Q(o o(J)), j O, 1, 2,
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Then with probability 1, whenever N is sufficiently large, the unique strongly consistent
maximum-likelihood estimate bN is well defined in 2’ and v limj_. (J) whenever
b() is sufficiently near b.

Proof It follows from Theorems 3.1 and 3.2 that with probability 1, N can be taken
sufficiently large that the unique strongly consistent maximum-likelihood estimate u is
well defined, lies in the interior of f’ and is the unique maximizer of L() in f’. Also with
probability 1, we can assume that N is sufficiently large that Q(,I, ’) is continuous in
and ’ in 2’, and Q(,I, ,I,’) and L() are differentiable in for and ’ in ft’. Since L() is
continuous, one can find a neighborhood f" ofv of the form

2"= {I, 2’ L() >_- L(N) e}

for some e > 0 which lies in the interior of 2’ and which is such that u is the only solution
of the likelihood equations contained in it. If (0) lies in if’, then {J)}j=0,1,2,... must also lie
in f" since L() is monotone increasing on {(J)}j=0,1,2,... It follows that each limit point of
{ffJ)}=0,1,2,... lies in ft" and, by statement (vi) of Theorem 4.1, also satisfies the likelihood
equations. Since N is the only solution of the likelihood equations in 2", one concludes
that (I)N lim_. (I)().

As in the case of Theorem 4.1, Theorem 4.3 is stated so that it is valid for the EM
algorithm in general. It should be noted, however, that Theorem 4.3 makes heavy use of
Theorems 3.1 and 3.2 as well as Theorem 4.1, and, so for mixture density estimation
problems, it pertains as it stands, strictly speaking, to the case to which Theorems 3.1 and
3.2 apply, namely that in which the sample at hand is of Type and L((I)) L1 ((I,) is given
by (3.1) and Q((I)I(I,’)= QI((I,I(I)’), by (4.1). Of course, Theorems 3.1 and 3.2 and,
therefore, Theorem 4.3 can be modified to treat mixture density estimation problems
involving samples of other types.

5. The EM algorithm for mixtures of densities from exponential families. Almost all
mixture density estimation problems which have been studied in the literature involve
mixture densities whose component densities are members of exponential families. As it
happens, the EM algorithm is especially easy to implement on problems involving
densities of this type. Indeed, in an application of the EM algorithm to such a problem,
each successive approximate maximum-liklihood estimate + is uniquely and explicitly
determined from its predecessor c, almost always in a continuous manner. Furthermore,
a sequence of iterates produced by the EM algorithm on such a problem is likely to have
relatively nice convergence properties.

In this section, we first determine the special form which the EM algorithm takes for
mixtures of densities from exponential families. We then look into the desirable properties
of the algorithm and sequences generated by it which are apparent from this form.
Finally, we discuss several specific examples of the EM algorithm for component densities
from exponential families which are commonly of interest.

A very brief discussion of exponential families of densities is in order. For an
elaboration on the topics touched on here, the reader is referred to the book of
Barndorff-Nielsen [7]. A parametric family of densities q(xlO), 0 ( c__ Rk, on R is said
to be an exponentialfamily if its members have the form

(5.1) q(x[O) a(O)-lb(x)eTt(x), x c Rn,
where b Ru R 1, R" Rk and a(O) is given by

a(O) f, b(x) ert(X) d#

for an appropriate underlying measure u on R". It is, of course, assumed that b(x) >-_ 0 for



222 RICHARD A. REDNER AND HOMER F. WALKER

all x c R" and that a(O) < for 0 c ft. Note that every member of an exponential family
has the same support in R", namely that of the function b(x).

The representation (5.1) of the members of an exponential family, in which the
parameter 0 appears linearly in the argument of the exponential function, is called the
"natural" parametrization; and 0 is called the "natural" parameter. If the set is open
and convex and if the component functions of t(x) together with the function which is
identically on R" are linearly independent functions on the intersection of the supports
of b(x) and t, then there is another parametrization of the members of the family, called
the "expectation" or "mean value" parametrization, in terms of the "expectation"
parameter

E(t(S)[O) d. t(x)q(x{O) dt.

Indeed, under these conditions on and t(x), one can show that

[e(t(x) 10’) e(t(x)I 0)](0 0) > 0

whenever 0’ 7 0, and it follows that the assignment 0 E(t(X) [0) is one-to-one and
onto from to an open set ft c_ Rk. In fact, the correspondence 0 E(t(X) IO) is a
both-ways continuously differentiable mapp.ing between ft and ft. (See Barndorff-Nielsen
[7, p. 121].) So under these conditions on ft and t(x), one can represent the members of
the family as

(5.2) p(x ) q(x O()) a(dp)-’b(x)e()Tt(x), x -c Rn,

for c ft, where 0() satisfies --E(t(X) 10()) and a(O()) is written as a() for
convenience. Note that p(xl) is continuously differentiable in , since q(xlO) is
continuously differentiable in 0 and 0() is continuously differentiable in .

Now suppose that a parametric family of mixture densities of the form (1.1) is given,
with ,b* (a, ., am, ’, ", O*m) the "true" parameter value to be estimated; and
suppose that each component density p;(xl3 is a member of an exponential family.
Specifically, we assume that each pi(xI qbi) has the "expectation" parametrization for
; ft; c_ R"’ given by

pi(x i) ai((/)i)-lbi(x)eOi(i)rti(x), x Rn,
for appropriate ai, b;, t; and Oi. We further assume that it is valid to reparametrize
in terms of the "natural" parameter 0; 0;(;) in the manner of the above discussion.

To investigate the special form and properties of the EM algorithm for the given
family of mixture densities, we assume that 1, ", (])m are mutually independent
variables and consider for convenience a sample $1 {xk }=,...,N of Type 1. (A discussion
similar to the following is valid mutatis mutandis for samples of other types.) If
(a, Cm, , ) is a current approximate maximizer of the log-likelihood
function LI() given by (3.1), then the next approximate maximizer I,+ (ai, +, Cm+) prescribed by the M-step of the EM algorithm satisfies (4.5) and (4.6). For

1, m, what /+ satisfy (4.6) ? If one replaces eachp(x Ii) in the sum in (4.6) by
its expression in the "natural" parameter Oi, differentiates with respect to Oi, equates the
sum of derivatives to zero, and finally restores the "expectation" parametrization, then
one sees that the unique /+ which satisfies (4.6) is given explicitly by

,=, p(x, lO) ,=, p<x lO j
(5.3) /+
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(As in the case of (4.8) and (4.9), the factors c,. are left in the numerator and denominator
for aesthetic reasons only.)

Not only are (4.5) and (5.3) easily evaluated and heuristically appealing formulas
for determining + from fie, they also provide the key to a global convergence analysis of
iteration sequences generated by the EM algorithm in the case at hand which goes beyond
Theorem 4.1. Theorem 5.1 below summarizes such an analysis. In order to make the
theorem complete and self-contained, some of the general conclusions of Theorem 4.1 are
repeated in its statement.

THEOREM 5.1. Suppose that {(I)(j)= (O/ j), O/(mj), 1)I j), (])(mJ))}j=0,1,2,... is a
sequence in 2 generated by the EM iteration (4.5) and (5.3). Then Ll() increases
monotonically on {(J)}j=0,1,2,... to a (possibly infinite) limit L *. Furthermore, for each i,
{4J)}j=l,2,... is contained in the convex hull of {t,(Xk)}k=,,...,u. Consequently, the set - of
all limit points of {(I,(J)}j__=0,1,2,... is compact, and the likelihood equations.(3.5) and (3.8)
are satisfied on . f. If . 7 , then L* is finite and each b . satisfies
L(6) L* and is a fixed point of the EM iteration. Finally, if - _

2, then is
connected as well as compact.

Remark. If the convex hull of {t,.(xk)}=,,...,u is contained in ft,. for each i, then
D 7 . _

ft and all of the conditional conclusions of Theorem 5.1 hold. The convex
hull of {ti(Xk)}k=l,...,N is indeed contained in f,. for each in many (but not all) applications.
(See the examples at the end of this section.)

Proof One sees from (5.3) that for each i, 4/+ is always a convex combination of the
values {ti(Xk)}k=l,...,m, and it follows that {(])}J)}j=0,1,2,... is contained in the convex hull of
{t;(x,)},__. l,...,m for each i. Since these convex hulls are compact sets, one concludes that -is compact.

Now each density pi(xlci) is continuously differentiable in qS,. on ft;, and so it is clear
from (3.1) and (4.1) that L,(I,) and Q,((I,I(I,’) are continuous in and ’ and
differentable in 4),, 4m in f. Furthermore, it is apparent from (4.5) and (5.3) that
I, + depends continuously on c, and one sees from the discussion following Theorem 4.1
that limj_ 11(j+l) (J)ll 0 if -_ 2. In light of these points, one verifies the
remaining conclusions of Theorem 5.1 via a straightforward application of Theorem 4.1
(including statement (vi)’), and the proof is complete.

One can also exploit (4.5).and (5.3) to obtain a local convergence result which goes
beyond Theorem 4.3 for mixture density estimation problems of the type now under
consideration. Theorem 5.2 and its proof below provide not only a stronger local
convergence statement than Theorem 4.3 for a sequence of iterates produced by the EM
algorithm, but also a means of both quantifying the speed of convergence of the sequence
and gaining insight into properties of the mixture density which affect the speed of
convergence. This theorem is essentially the generalization of Redner [120] of the local
convergence results of Peters and Walker [113] for mixtures of multivariate normal
densities, and its proof closely parallels the proofs of those results. In the general case of
incomplete data from exponential families, Sundberg 134], 135] has obtained consis-
tency results for maximum-likelihood estimates and local convergence results for the EM
algorithm. His results are similar to those below in the mixture density case, although the
reader of [135] is referred’to [133] for proofs of the local convergence results. A proof of
Theorem 5.2 is included here since, to the best of our knowledge, no proof of a local
convergence result of this type has previously appeared in the generally available
literature.

THEORFM 5.2. Suppose that the Fisher information matrix I(b) given by (2.5.1) is
positive definite at b* and that b* (Cl*, C*m, Cb*, alP*m) is such that ci* > 0
for 1, m. For b) in 2, denote by {I,J)}i=o,l,2,... the sequence in f generated by
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the EM iteration (4.5) and (5.3). Then with probability 1, whenever N is sufficiently
large, the unique strongly consistent solution v (a, am,V cb, ChUm) of the
likelihood equations is well defined and there is a certain norm II, on in which
O(j) }j=O,l,2,... converges linearly to whenever ) is sufficiently near , i.e., there is a
constant X, 0 _-< X < 1,for which

(5.4) O(j+l) X I1 (R)NI, j 0, 1, 2,. .,
whenever () is sufficiently near s.

Proof One sees not only that Condition 2 of 3 is satisfied, but also, by restricting f
to be a small neighborhood of O* if necessary, that Condition holds as well for the family
of mixture densities under consideration. It follows from Theorem 3.1 that, with
probability 1, N is well defined whenever N is sufficiently large and converges to O* as N
approaches infinity. It must be shown that, with probability 1, whenever N is sufficiently
large, there is a norm II" on and a constant X, 0 _-< X < 1, such that (5.4) holds whenever
() is sufficiently near N. Toward this end, we observe that the EM iteration of interest is

actually a functional iteration O+= G(Oc), where G(O) is the function defined in the
obvious wa.y by (4.5) and (5.3). Note that G(O) is continuously differentiable in f and
that any which satisfied the likelihood equations (3.5) and (3.8) (and s in
particular) is afixedpoint of G(O), i.e., @ G(@). Consequently one can write

for any in f near N and any norm ]. on f, where G’(Os) denotes the Fr6chet
derivative of G(O) evaluated at N. (For questions concerning Fr6chet derivatives, see, for
example, Luenberger [95].) We will complete the proof by showing that with probability
1, G’(ON) converges as N approaches infinity to an operator which has operator norm less
than with respect to a certain norm on f.

For convenience, we introduce the following notation for 1, m:

(x) pi(x y)/p(x O),

f. [ti(X th/] [t.(x) 4fflrP;(Xl 4if) d#,ffi

"Yi(X) O’t?-I [ti(x )iN].

Regarding an element c f as an (m + 2;;m__ n;)-vector in the natural way, one can show
via a very tedious calculation that G’(ON) has the (m + 2im__l ni) X (m + 27’=1 n,.) matrix
representation

where

(G’(ON) diag 1, 1, fl,(xk)a, "Yl(Xk)’Yl(Xk) T,

1N )- kl m(Xk)O’mYm(Xk)’/m(Xk)T

O/m, O/1 0"1, O/m O’m) V(Xk) V(xk) T

V(x) (/! (x),. m(X), O/1 1 (X)"Y1 (X) T, Olmm(X),.Ym(X T) T.

(Since N converges to O* with probability 1, we can assume that, with probability 1, each
a,.N is nonzero whenever N is sufficiently large.) It follows from the strong law of large
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numbers (see Lo6ve [94]) that, with probability 1, G’(I,z) converges to
E[G’(b*) I QR, where

Q diag (a, a’m, o’-I
al,. a*m- am)

and

R f V(x) V(x)p(xl*) du.

It is understood that in these expressions defining Q and R, CN and its components have
been replaced by * and its components.

It remains to be shown that there is a norm II" on 2 with respect to which E[G’(b*)]
has operator norm less than 1. Now Q and R are positive-definite symmetric operators
with respect to the Euclidean inner product, and so QR is a positive-definite symmetric
operator with respect to the inner product (., defined by (U, W) UrQ-Wfor (m +
2;,.m= n,.)-vectors U and W. Consequently, to prove the theorem, it suffices to show that the
operator norm of QR with respect to the norm defined by (., is less than or equal to 1.

Since QR is positive-definite symmetric with respect to (., ), we need only show
that (U, QRU) <= (U, U) for an arbitrary (m + 2;im__ ni)-vector U (6, 6m, blr,

",$m)r.Onehas

(U, QRU) UTRU

f, 6(x) + 4,[ [c*/;(x)%(x)] p(xl,I,*) du
i=1 i=1

f, [c,.*-I / /r’r,(x)l?(x) p(xl*) d
il

The inequality is a consequence of the following corollary of Schwarz’s inequality: If
ni >-- 0 for 1, ., m and if iml ni 1, then {2. .(,.n,.} =< 2,., ri for all {(il,._-1,...,m.
Since

f. "/i(x)pi(x dpi*) du O,

one continues to obtain

(U, QRU) <= f. i [b2a*-2 + 6T %(X)%(x)T6]Ce*p(xIck*) d# (U, U).

This completes the proof.
It is instructiveto explore the consequences of Theorem 5.2 and the developments in

its proof. One sees from the proof of Theorem 5.2 that, with probability 1,.for sufficiently
large N and (0) sufficiently near Cu, an inequality (5.4) holds in which [1. is the norm
determined by the inner product (., defined in the proof and , is arbitrarily close to the
operator norm of E [G’(,I,*)] I QR determined by [l" 1[. Since QR is positive-definite
symmetric with respect to (.,.), this operator norm is just p(I- QR), the spectral
radius or largest absolute value of an eigenvalue of I QR. Thus, with probability 1, one
can obtain a quantitative estimate of the speed of convergence to I,u for.large N of a
sequence generated by the EM iteration (4.5) and (5.3) by taking 3, p(I- QR) in
(5.4).
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What properties of the mixture density influence the speed of convergence to ,IN of
an EM iteration sequence for large N? Careful inspection shows that if the component
populations in the mixture are "well separated" in the sense that

0 forxR’, wheneveriCj,
p(xl*) p(xl*)

then QR I. It follows that p(I- QR) O, and an EM iteration sequence which
converges to N exhibits rapid linear convergence. On the other hand, if the component
populations in the mixture are "poorly separated" in the sense that, say, the ith and jth
component populations are such that

p (x p (x ,? for X C Rn,
p(x ,I,*) p(x ,I,*)

then R is nearly singular. One concludes that p(l QR) in this case and that slow
linear convergence of an EM iteration sequence to Cu can be expected.

In the interest of obtaining iteration sequences which converge more rapidly than
EM iteration sequences, Peters and Walker [113], [114] and Redner [120] considered
iterative methods which proceed at each iteration in the EM direction with a step whose
length is controlled by a parameter e. In the present context, these methods take the form

(5.6) O+ F(c) (1 e) + eG(I,),

where G(I,) is the EM iteration function defined by (4.5) and (5.3). The idea is to
optimize the speed of convergence to CN of an iteration sequence generated by such a
method for large N by choosing e to minimize the spectral radius of E[F(,I*)]
I eQR. As-in [113], [114] and [120], one can easily show that the optimal choice ofe is
always greater than one, lies near one if the component populations in the mixture are
"well-separated" in the above sense, and cannot be much smaller than two if the
component populations are "poorly separated" in the above sense. The extent to which the
speed of convergence of an iteration sequence can be enhanced by making the optimal
choice of e in (5.6) is determined by the length of the subinterval of (0, 1] in which the
spectrum of QR lies. (Greater improvements in convergence speed are realized from the
optimal choice of e when this subinterval is relatively narrow.) The applications of
iterative procedures of the form (5.6) are at present incompletely explored and might well
bear further investigation.

We conclude this section by briefly reviewing some of the special forms which the
EM iteration takes when a particular component density pi(x[4i) is a member of one of
the common exponential families. We also comment on some convergence properties of
sequences {(])J)}j=0,1,2,... generated by the EM algorithm in the examples considered.
Hopefully, our comments will prove helpful in determining convergence properties of EM
iteration sequences {J)}j=0,,_,... through the use of Theorem 5.1 or other means when all
component densities are from one or more of these example families..

Example 5.1. Poisson density. In this example, n and a natural choice of 2; is

’i {(])i R: 0 < (])i < c}. For i C ’i, one has

pi(xl dpi) e-", x O, 1, 2,.

and the EM iteration (5.3) for a sample of Type becomes

k=l P(Xl) k=l p(x )
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Note that 4? is always contained in the convex hull of {Xk}=l,...,N, which is a compact
subset of ft; Therefore, the set of limit points of an EM iteration sequence l,(J) istWi /j=0,1,2,.

a nonempty compact subset of f;.
Example 5.2. Binomial density. Here n 1, and one naturally chooses ft; to be the

open set {4; c R 1" 0 < (De < }. For (De C -i, pi(x[dPi) is given by

p;(x 14);)= ()4(1-4;)v;-x, x=0, 1, ,vi,

for a prescribed integer v;. In this case, the EM iteration (5.3) for a sample of Type
becomes

p(x e) , p(x e)
Since Pi(XldPi) is nonzero only if x 0, 1, vi, one sees from this expression that the
set of limit points of an EM iteration sequence {4} j) }j=0,1,_,... is a nonempty compact subset
of; {4); R l" 0 _--< (])i 1}.

Example 5.3. Exponential density. Again, n and one takes 2i {4)i c R"
0 < 4,; < }. For ; f;, one has

p(x 4)) --e-x/i 0 < x <
49i

The EM iteration (5.3) for a sample of Type now becomes

k=l xk P(Xk oc) k=l p(xk Ibc) J’
and one sees that the set of limit points of an EM iteration sequence {4}J)}=0,1,2,... is a
nonempty compact subset of

Example 5.4. Multivariate normal density. In this example, n is an arbitrary
positive integer, and 4; is most conveniently represented as (])i (#i, i), where #; R" and
2; is a positive-definite symmetric n x n matrix. (Of course, this representation of 4; is not
the usual representation of the "expectation" parameter.) Then ’i is the set of all such 4;,
and p(xl4)) is given by (4.7). For a sample of Type 1, the EM iteration (5.3) becomes
that of (4.8) and (4.9).

One can see from (4.9) that each 2;/+ is in the convex hull of {(x-
(x ,.+)r}=,...,N, a set of rank-one matrices which, of course, are not positive definite.
Thus there is no guarantee that a sequence of matrices {2} J) }=0,1,2,... produced by the EM
iteration will remain bounded from below. Indeed, it has been observed in practice that
sequences of iterates produced by the EM algorithm for a mixture of multivariate normal
densities do occasionally converge to "singular solutions" (cf. Duda and Hart [46]), i.e.,
points on the boundary of f; with associated singular matrices.

It was observed by Hosmer [75] that if enough labeled observations are included in a
sample on a mixture of normal densities, then with probability 1, the log-likelihood
function attains its maximum value at a point at which the covariance matrices are
positive definite. Similarly, consideration of samples with a sufficiently large number of
labeled observations alleviates with probability the problem of an EM iteration
sequence having "singular solutions" as limit points. For example, if one considers a
sample S Si $3 which is a stochastically independent union of a sample
S {xk}=,...,s of Type and a sample $3 7’= {z;}=,...,x, of Type 3, then the EM
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iteration becomes

N+K = p(xl,I,) + K,

u? , x p(x I)

(x u3 (x u?
’p’(x I)

,=, p(x, ’I’
"31- Z (Zik- )(Zik-

k=l

OlTpi(Xk])
=, p(x I,I,) + K

where K 7’= K;. One sees from the expression for 2; that 2;+ is bounded below by

Z (Zik #)(zik I.t)
tiPi(Xk dpci)

=, =, p(xl) + K;

which is in turn bounded below by

N+ Ki

where

Z
gi

Zik.

Now this last matrix is positive definite with probability whenever Ki > n. Consequently,
if K,. > n, then with probability the elements of a sequence/vJ)l produced by thet,.q /j=0,1,2,.

EM algorithm are bounded below by a positive definite matrix; hence, such a sequence
cannot have singular matrices as limit points.

6. Performance of the EM algorithm. In this concluding section, we review and
summarize features of the EM algorithm having to do with its effectiveness in practice on
mixture density estimation problems. As always, it is understood that a parametric family
of mixture densities of the form (1.1) is of interest, and that a particular *
(a*, am*, 4*, 4m*) is the "true" parameter value to be estimated.

In order to provide some perspective, we begin by offering a brief description of the
most basic forms of several alternative methods for numerically approximating maxi-
mum-likelihood estimates. In describing these methods, it is assumed for convenience that
the sample at hand is a sample S {Xk}k=,...,N of Type described in 3 and that one can
write as a vector (, G)r of unconstrained scalar parameters at points of
interest in f. Each of the methods to be described seeks a maximum-likelihood estimate
by attempting to determine a point such that

(6.1) VL,(4) O,

where LI() is the log-likelihood function given by (3.1). The features of the methods
which concern us here are their speed of convergence, the computation and storage
required for their implementation, and the extent to which their basic forms need to be
modified in order to make them effective and trustworthy in practice.
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The first of the alternative methods to be described is Newton’s method. It is the
method on which all but the last of the other methods reviewed here are modeled, and it is
as follows: Given a current approximation ,I,c of a solution of (6.1), determine a next
approximation + by

(6.2) + r H(C)--,VLl (4c).

The function H(4)in (6.2)is the Hessian matrix of Ll(4) given by (3.10).
Under reasonable assumptions on LI(), one can show that a sequence of iterates

{J)}j=o,l,2,... produced by Newton’s method enjoys quadratic local convergence to a
solution I, of (6.1) (see, for example, Ortega and Rheinboldt [107], or Dennis and
Schnabel [42]). This is to say that, given a norm I[" on ft, there is a constant /such that if
0) is sufficiently near 4), then an inequality

(6.3) [](J+’) ’l[ --</3 I(j)- @ 12
holds for j 0, 1, 2, Quadratic convergence is ultimately very fast, and it is
regarded as the major strength of Newton’s method. Unfortunately, there are aspects of
Newton’s method which are associated with potentially severe problems in some applica-
tions. For one thing, Newton’s method requires at each iteration the computation of the
v v Hessian matrix and the solution of a system of v linear equations (at a cost of O(v3)
arithmetic operations in general) with this Hessian as the coefficient matrix; thus the
computation required for an iteration of Newton’s method is likely to become expensive
very rapidly as m, n and N grow large. (It should also be mentioned that one must allow
for the storage of the Hessian or some set of factors of it.) For another thing, Newton’s
method in its basic form (6.2) requires for some problems an impractically accurate initial
approximate solution o) in order for a sequence of iterates {J)}j=o,,2,... to converge to a
solution of (6.1). Consequently, in order to be regarded as an algorithm which is safe and
effective on applications of interest, the basic form (6.2) is likely to require augmentation
with some procedure for enhancing the global convergence behavior of sequences of
iterates produced by it. Such a procedure should be designed to insure that a sequence of
iterates not only converges, but also does not converge to a solution of (6.1) which is not a
local maximizer of Ll().

A broad class of methods which are based on Newton’s method are quasi-Newton
methods of the general form

(6.4) b+ b B-7(R)Ll(cbc),

in which B is regarded as an approximation of H(OC). Methods of the form (6.4) which
are particularly successful are those in which the approximation B H(I,c) is maintained
by doing a secant update of B at each iteration (see Dennis and Mor6 [41 or Dennis and
Schnabel [42]). In the applications of interest here, such updates are typically realized as
rank-one or (more likely) rank-two changes in B. Methods employing such updates have
the advantages over Newton’s method of not requiring the evaluation of the Hessian
matrix at each iteration and of being implementable in ways which require only O(v2)
arithmetic operations to solve the system of v linear equations at each iteration. The price
paid for these advantages is that the full quadratic convergence.of Newton’s method is
lost; rather, under reasonable assumptions on L(), a sequence of iterates {)}=0,,2,...
produced by one of these methods can only be shown to exhibit local superlinear
convergence to a solution 4, of (6.1), i.e., one can only show that if a norm I1" on ft is given
and if 4,{) is sufficiently near (and an initial approximate Hessian B{) is sufficiently
near H()), then there exists a sequence {/3}a=0,,2,... which converges to zero and is such
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that

forj 0, 1, 2, Like Newton’s method, methods of the general form (6.4), including
those employing secant updates, are likely to require augmentation with safeguards to
enhance global convergence properties and to insure that iterates do not converge to
solutions of (6.1) which are not local maximizers of L().

There is a particular method of the form (6.4) which is specifically formulated for
solving likelihood equations. This is the method of scoring, mentioned earlier in connec-
tion with the work of Rao [119] and reviewed in a general setting by Kale [84], [85].
(Kale [84], [85] also discusses modifications of Newton’s method and the method of
scoring in which the Hessian matrix or an approximation of it is held fixed for some
number of iterations in the hope of reducing overall computational effort.) In the method
of scoring, one ideally chooses B in (6.4) to be

(6.5) B -NI(,),

where I() is the Fisher information matrix given by (2.5.1). Since the computation of
I(c) is likely to be prohibitively expensive for most mixture density problems, a more
appealing choice of B than (6.5) might be the sample approximation

N

(6.6) B -- [XT log p(x, ]c)] [V log p(x, )]r.
k---1

The choice (6.6) can be justified in the following manner: The Hessian H() is given by

(6.7)

N

H((I)) [V log p(x, (I))] [Ve log p(x, (I))] r
k=l

N

+ v v p(x I(R)).

Now the second sum in (6.7) has zero expectation at (I) (I)*; furthermore, since the terms

Y7 log p(x,l’) must be computed in order to obtain VLI((I)), the first sum in (6.7) is
available at the cost of only O(Ny2) arithmetic operations, while determining the second
sum is likely to involve a great deal more expense. Thus (6.6) is a choice of B which is
readily available at relatively low cost and which is likely to constitute a major part of
H(cV) when N is large and (V is near (I)*. It is clear from this discussion that the method of
scoring with B given by (6.6) is an analogue for general maximum-likelihood estimation
of the Gauss-Newton method for nonlinear least-squares problems (see Ortega and
Rheinboldt [107]). If the computation of I((V) is not too expensive, then the choice of B
given by (6.5) can be justified in much the same way.

The method of scoring in its basic form requires O(Ny2) arithmetic operations to
evaluate B given by (6.6) and O(v3) arithmetic operations to solve the system of v linear
equations implicit in (6.4). Since these O(Nv2) arithmetic operations are likely to be
considerably less expensive than the evaluation of the full Hessian given by (6.7), the cost
of computation per iteration of the method of scoring lies between that of a quasi-Newton
method employing a low-rank secant update and that of Newton’s method. Under
reasonable assumptions on L ((I)), one can show that, with probability 1, if a solution , of
(6.1) is sufficiently near (b* and if N is sufficiently large, then a sequence of iterates
{(I,(J)}j=0,1,2,... generated by the method of scoring with B given by either (6.5) or (6.6)
exhibits local linear convergence to ,; i.e., there is a norm I1" on and a constant h,
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0 =< X < 1, for which

(6.8) II’I’(+l) ,i, =< xll,I,(J’ ,i,I, j--O, 1, 2,. .,
whenever I,) is sufficiently near . If , is very near * and if N is very large, then this
convergence should be fast, i.e., (6.8) should hold for a small constant . Like Newton’s
method and all methods of the general form (6.4), the method of scoring is likely to
require augmentation with global convergence safeguards in order to be considered
trustworthy and effective.

The last methods to be touched on in this review are conjugate gradient methods.
These methods are conceptually quite different from Newton’s method and have the
particular virtue of not requiring the storage or maintenance of an approximate Hessian.
Thus they may be the methods of choice when the number of independent variables is so
large that storage is at a premium. The original conjugate gradient method was derived to
solve linear equations with positive-definite symmetric coefficient matrices, and a number
of extensions and variations of this basic method now exist for both linear and nonlinear
problems. Precise general theoretical convergence properties of conjugate gradient
methods are not easily stated, but in practice they can be regarded as nearly always
linearly convergent for nonlinear problems (see Gill, Murray and Wright [53]). In the
nonlinear case, the amount of work required for an iteration is difficult to predict because
an approximate maximizer or minimizer must be found along a direction of search.
Overall, they appear to be less efficient on small problems than methods modeled after
Newton’s method, but potentially of great value (and perhaps the only useful methods)
for very large problems. The reader is referred to Ortega and Rheinboldt [107] and Gill,
Murray and Wright [53] for an expanded discussion of the forms and properties of
conjugate gradient methods. Additional references are offered by Dennis and Schnabel
[42], as well as by [107] and [53].

Having reviewed the above alternative methods, we return now to the EM algorithm
and summarize its attractive features. Its most appealing general property is that it
produces sequences of iterates on which the log-likelihood function increases monotoni-
cally. This monotonicity is the basis of the general convergence theorems of 4, and these
theorems reinforce a large body of empirical evidence to the effect that the EM algorithm
does not require augmentation with elaborate safeguards, such as those necessary for
Newton’s method and quasi-Newton methods, in order to produce iteration sequences
with good global convergence characteristics. To be clear on the meaning of "good global
convergence characteristics," let us specifically say that barring very bad luck or some
local pathology in the log-likelihood function, one can expect an EM iteration sequence to
converge to a local maximizer of the log-likelihood function. We do not intend to suggest
that the EM algorithm is especially adept at finding global maximizers, but at this stage
of the art, there are no well tested, general purpose algorithms which can reliably and
efficiently find global maximizers. There has been a good bit of work directed toward the
development of such algorithms, however; see Dixon and Szeg5 [44].

More can be said about the EM algorithm for mixtures of densities from exponential
families under the assumption that 4, (])m are mutually independent variables. One
sees from (4.5) and (5.3) and similar expressions for samples of types other than Type
that it is unlikely that any other algorithm would be nearly as easy to encode on a
computer or would require as little storage. In view of (4.5) and (5.3), it also seems that
any constraints on are likely to be satisfied, or at least nearly satisfied for large samples.
For example, it is clear from (4.9) that each ,.+ generated by the EM algorithm for a
mixture of multivariate normal densities is symmetric and, with probability 1, positive-
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definite whenever N > n. Certainly the mixing proportions generated by (4.5) are always
nonnegative and sum to 1. It is also apparent from (4.5) and (5.3) that the computational
cost of each iteration of the EM algorithm is low compared to that of the alternative
methods reviewed above. In the case of a mixture of multivariate normal densities, for
example, the EM algorithm requires O(mnZN) arithmetic operations per iteration,
compared to at least [O(m2n4N) + 02(m3n6)] for Newton’s method and the method of
scoring and [Ol(mnZN) + O2(m2n4)] for a quasi-Newton method employing a low-rank
secant update. (All of these methods require the same number of exponential function
evaluations per iteration.) Arithmetic per iteration for the three latter methods can, of
course, be reduced by retaining a fixed approximate Hessian for some number of
iterations at the risk of increasing the total number of iterations.

In spite of these attractive features, the EM algorithm can encounter problems in
practice. The source of the most serious practical problems associated with the algorithm
is the speed of convergence of sequences of iterates generated by it, which can often be
annoyingly or even hopelessly slow. In the case of mixtures of densities from exponential
families, Theorem 5.2 suggests that one can expect the convergence of EM iteration
sequences to be linear, as opposed to the (very fast) quadratic convergence associated with
Newton’s method, the (fast) superlinear convergence associated with a quasi-Newton
method employing a low-rank secant update, the (perhaps fast) linear convergence of the
method of scoring, and the linear convergence of conjugate gradient methods. The
discussion following Theorem 5.2 suggests further that the speed of this linear conver-
gence depends in a certain sense on the separation of the component populations in the
mixture. To demonstrate the speed of this linear convergence and its dependence on the
separation of the component populations, we again consider the example of a mixture of
two univariate normal densities (see (1.3) and (1.4)).

Table 6.1 summarizes the results of a numerical experiment involving a mixture of
two univariate normal densities for the choices of * appearing in Table 3.3. (These

2* 2*choices were obtained as before by taking a* .3, a o 1, and varying the mean
separation t*- t. For convenience, we took t -z’.) In this experiment, a Type
sample of 1000 observations on the mixture was generated, for each choice of *; and a
sequence of iterates was produced by the EM algorithm (see (4.5), (4.8) and (4.9)) from

(0) 2(0)starting values al) a) .5, tl) 1.5tl*, t) 1.5t and r r. .5. An accurate
determination of the limit of the sequence was made in each case, and observations were
made of the iteration numbers at which various degrees of accuracy were first obtained.
These iteration numbers are recorded in Table 6.1 beneath the corresponding degrees of
accuracy; in the table, "E" denotes the largest absolute value of the components of the
difference between the indicated iterate and the limit. In addition, the spectral radius of
the derivative of the EM iteration function at the limit was calculated in each case (cf.
Theorem 5.2 and the following discussion). These spectral radii, appearing in the column
headed by "o" in Table 6.1, provide quantitative estimates of the factors by which errors
are reduced from one iteration to the next in each case. Finally, to give an idea of the point
in an iteration sequence at which numerical error first begins to affect the theoretical
performance of the algorithm, we observed in each case the iteration numbers at which
loss of monotonicity of the log-likelihood function first occurred; these iteration numbers
appear in Table 6.1 in the column headed by "LM."

In preparing Table 6.1, all computing was done in double precision on an IBM 3032.
Eigenvalues were calculated with EISPACK subroutines TREDI and TQLI, and
normally distributed data was obtained by transforming uniformly distributed data
generated by the subroutine URAND of Forsythe, Malcolm and Moler [48] based on
suggestions of Knuth [90].
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TABLE 6.1
Results of applying the EM algorithm to a problem involving a Type sample on a mixture of two

univariate normal densities with o .3, a* r" 1.

#$- # E < 10- E < 10-2 E < 10-3 E < 10-4 E < 10-5 E < 10-6 E < 10-7 E < 10-8

0.2 2078 2334 2528 2717 2906 3095 3283 3472

LM

3056

0.5 710 852 985 1117 1249 1381 1513 1643 1361

1.0 349 442 526 610 693 777 861 949 779

1.5 280 414 537 660 783 906 1028 1151 887

2.0 126 281 432 582 732 883 1033 1183 846

3.0 2 31 62 93 124 155 185 216 173

4.0 6 16 25 35 44 54 63 55

6.0 2 3 4 5 7 8 8

.9879

.9827

.9728

.9814

.9849

.9280

.7864

.2143

A number of comments about the contents of Table 6.1 are in order. First, it is clear
from the table that an exorbitantly large number of EM iterations may be required to
obtain a very accurate numerical approximation of the maximum-likelihood estimate if
the sample is from a mixture of poorly separated component populations. However, in
such a case, one sees from Table 3.3 that the variance of the estimate is likely to be such
that it may be pointless to seek very much accuracy in a numerical approximation.
Second, we remark on the pleasing consistency between the computed values of the
spectral radius of the derivative of the EM iteration function and the differences between
the iteration numbers needed to obtain varying degrees of accuracy. What we have in
mind is the following: If the errors among the members of a linearly convergent sequence
are reduced more or less by a factor of p, 0 _-< p < 1, from one iteration to the next, then
the number of iterations Ak necessary to obtain an additional decimal digit of accuracy is
given approximately by Ak -log 10/log O. This relationship between Ak and 0 is borne
out very well in Table 6.1. This fact strongly suggests that after a number of EM
iterations have been made, the errors in the iterates lie almost entirely in the eigenspace
corresponding to the dominant eigenvalue of the derivative of the EM iteration function.
We take this as evidence that one might very profitably apply simple relaxation-type
acceleration procedures such as those of Peters and Walker [113], [114] and Redner
120] to sequences of iterates generated by the EM algorithm.

Third, in all of the cases listed in Table 6.1 except one, we observed that over 95
percent of the change in the log-likelihood function between the starting point and the
limit of the EM iteration sequence was realized after only five iterations, regardless of the
number of iterations ultimately required to approximate the limit very closely. (The
exceptional case is that in which #*- * 1.0; in that case, about 83 percent of the
change in the log-likelihood function was observed after five iterations.) This suggests to
us that even when the component populations in a mixture are poorly separated, the EM
algorithm can be expected to produce in a very small number of iterations parameter
values such that the mixture density determined by them reflects the sample data very

3We are grateful to the Mathematics and Statistics Department of the University of New Mexico for
providing the computing support for the generation of Table 6.1.
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well. Fourth, it is evident from Table 6.1 that elements of an EM iteration sequence
continue to make steady progress toward the limit even after numerical error has begun to
interfere with the theoretical properties of the algorithm.

Fifth, the apparently anomalous decrease in o occurring when z*- # decreases
from 2.0 to 1.0 happened concurrently with the iteration sequence limit of the proportion
of the first population in the mixture becoming very small. (Such very small limit
proportions continued to be observed in the cases z* z 0.5, 0.2.) We do not know
whether this decrease in the limit proportion of the first population indicates a sudden
movement of the maximum-likelihood estimate as #* drops below 2.0, or whether the
iteration sequence limit is something other than the maximum-likelihood estimate in the
cases in which * is less than 2.0. Finally, we also conducted more than 60 trials
similar to those reported in Table 6.1, except with samples of 200 rather than 1000
generated observations on the mixture. The results were comparable to those given in
Table 6.1. It should be mentioned, however, that the EM iteration sequences obtained
using samples of 200 observations did occasionally converge to "singular solutions," i.e.,
limits associated with zero component variances. Convergence to such "singular
solutions" did not occur among the relatively small number of trials involving samples of
1000 observations.

At present, the EM algorithm is being widely applied, not only to mixture density
estimation problems, but also to a wide variety of other problems as well. We would like to
conclude this survey with a little speculation about the future of the algorithm. It seems
likely that the EM algorithm in its basic form will find a secure niche as an algorithm
useful in situations in which some resources are limited. For example, the limited time
which an experimenter can afford to spend writing programs coupled with a lack of
available library software for safely and efficiently implementing competing methods
could make the simplicity and reliability of the EM algorithm very appealing. Also, the
EM algorithm might be very well suited for use on small computers for which limitations
on program and data storage are more stringent than limitations on computing time.

Although meaningful comparison tests have not yet been made, it seems doubtful to
us that the unadorned EM algorithm can be competitive as a general tool with
well-designed general optimization algorithms such as those implemented in good
currently available software library routines. Our doubt is based on the intolerably slow
convergence of sequences of iterates generated by the EM algorithm in some applications.
On the other hand, it is entirely possible that the EM algorithm could be modified to
incorporate procedures for accelerating convergence, and that such modification would
enhance its competitiveness. It is also possible that an effective hybrid algorithm might be
constructed which first takes advantage of the good global convergence properties of the
EM algorithm by using it initially and then exploits the rapid local convergence of
Newton’s method or one of its variants by switching to such a method later. Our feeling is
that time might well be spent on research addressing these possibilities.
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