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Abstract. A Newton–Krylov method is an implementation of Newton’s method in which a
Krylov subspace method is used to solve approximately the linear systems that characterize steps of
Newton’s method. Newton–Krylov methods are often implemented in “matrix-free” form, in which
the Jacobian-vector products required by the Krylov solver are approximated by finite differences.
Here we consider using approximate function values in these finite differences. We first formulate a
finite-difference Arnoldi process that uses approximate function values. We then outline a Newton–
Krylov method that uses an implementation of the GMRES or Arnoldi method based on this process,
and we develop a local convergence analysis for it, giving sufficient conditions on the approximate
function values for desirable local convergence properties to hold. We conclude with numerical exper-
iments involving particular function-value approximations suitable for nonlinear diffusion problems.
For this case, conditions are given for meeting the convergence assumptions for both lagging and
linearizing the nonlinearity in the function evaluation.
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1. Introduction. The problem of interest is to determine u∗ ∈ R
n satisfying a

system of nonlinear equations

F (u∗) = 0,(1.1)

where F : R
n → R

n is continuously differentiable. A classical algorithm for approxi-
mately solving (1.1) is Newton’s method, which, at a current approximate solution u,
generates a next approximate solution u+ s through a step s that satisfies the linear
Newton equation

F ′(u)s = −F (u).(1.2)

Our interest here is in Newton–Krylov methods (cf. [2], [11], [12], [15]), in which
Krylov subspace methods are used to solve (1.2) approximately. An extensive intro-
duction to Krylov subspace methods is beyond the scope of this paper; we touch on
only the most relevant aspects here and refer the reader to [8], [9], [18], [19] for full
treatments.
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A Krylov subspace method applied to a general linear system Ax = b, A ∈ R
n×n

invertible, begins with an initial approximate solution x0 and, at the jth iteration,
determines xj = x0 + zj through a correction zj in the jth Krylov subspace

Kj ≡ span {r0, Ar0, . . . , Aj−1r0},(1.3)

where r0 = b−Ax0. Specific methods are determined by the choice of zj ∈ Kj .
We focus here on two Krylov subspace methods: the generalized minimal residual

method (GMRES) [16], in which each zj is chosen to minimize the residual norm over
all corrections in Kj , and the Arnoldi method (also known as the full orthogonalization
method) [17], in which each zj is chosen to make the residual orthogonal to Kj , if that
is possible. (We consider these methods in only their basic forms and do not consider
“restarted” or “truncated” variants.) These have in common that their iterates are
generated directly from the Arnoldi process [1], which we review in section 2.1.

In the Newton–Krylov context, a particular advantage of the most widely used
Krylov subspace methods, including the GMRES and Arnoldi methods, is that they
require only products of F ′ with vectors for their implementation. Thus they allow
“matrix-free” Newton–Krylov formulations (cf. [12]), in which these products are
evaluated or approximated without creating or storing F ′. Perhaps the most popular
way of approximating these products is with a first-order forward difference

F ′(u)v ≈ F (u + σv) − F (u)

σ
,(1.4)

where σ is an appropriately chosen difference step.
Each approximation (1.4) requires a new F -evaluation. If F -evaluations are ex-

pensive or if many iterations of the Krylov solver are required, then the aggregate cost
of these evaluations over all Krylov iterations may be undesirably high. In this case,
it is natural to consider using an inexpensive approximation of F (u + σv) in (1.4), if
one is available.

In the following, we explore this possibility. Our goal is to lay out a framework
that will provide guidelines for using such approximations, specifically to outline con-
ditions on such approximations that lead to desirable convergence properties of the re-
sulting Newton–Krylov methods. Although we consider only the GMRES and Arnoldi
methods here, it is our expectation that the results will provide useful guidance when
other Krylov subspace methods are used as well.

In section 2, we first describe the approximations of F that we allow in difference
quotients and formulate a finite-difference Arnoldi process that uses them. We then
outline a Newton–Krylov method that uses GMRES or Arnoldi implementations based
on this process, and we develop a local convergence analysis for it. In section 3, we
discuss numerical experiments involving two illustrative approximations of F that are
appropriate for a broad class of nonlinear diffusion problems. We also show how these
approximations can be chosen to satisfy the convergence assumptions in section 2.
We offer a summary discussion and conclusions in section 4.

This work builds on and extends work of [3]. We assume throughout that F is
continuously differentiable on domains of interest and, for convenience, that ‖ · ‖ and
〈·, ·〉 are the Euclidean norm and inner-product on R

n, respectively. (All results can
be easily extended to the case of an arbitrary inner-product norm on R

n.) For u ∈ R
n

and δ > 0, we denote B(u, δ) ≡ {v ∈ R
n : ‖v − u‖ < δ}. We implicitly assume

that arithmetic is exact and do not consider errors due to rounding in finite-precision
arithmetic.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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2. The approximate finite-difference framework. We assume that there
is a function F̃ : R

n × R
n → R

n such that F̃ (u, u) = F (u) for all u ∈ R
n. The

presumption is that, in an application of interest, one can determine F̃ so that, for
each u and w near u, evaluating F̃ (u,w) is preferred over evaluating F (w). Thus, in
lieu of (1.4), we consider approximations of the form

F ′(u)v ≈ F̃ (u, u + σv) − F (u)

σ
.(2.1)

We make further assumptions on F̃ after outlining in section 2.1 a version of the
Arnoldi process that uses these approximations.

2.1. The approximate finite-difference Arnoldi process. We begin by re-
calling the usual Arnoldi process for a general linear system Ax = b, A ∈ R

n×n

invertible, and initial x0 ∈ R
n.

Algorithm 2.1: Arnoldi Process

Given x0, set r0 = b−Ax0.

If r0 = 0, stop; otherwise set v1 = r0/‖r0‖.
For j = 1, 2, . . . , do:

Set wj = Avj −
∑j

i=1 hijvi, where hij = 〈Avj , vi〉.
If hj+1,j ≡ ‖wj‖ = 0, stop; otherwise, set

vj+1 = wj/hj+1,j and continue.

If r0 	= 0, then the process terminates at step j > 0 if and only if hj+1,j = 0,
which occurs if and only if Kj is an invariant subspace of A. Thus the process must
terminate for some j ≤ n. For each j up to termination, {vi}i=1,...,j constitutes an
orthonormal basis of Kj . After j steps, particular products of the process are the
matrices Vj ≡ (v1, . . . , vj) and upper-Hessenberg

Hj ≡

⎛
⎜⎜⎝

h11 · · · h1j

h21 · · · h2j

. . .
...

hj+1,j

⎞
⎟⎟⎠ .

The relationship between Vj and Hj is characterized by

AVj =

{
Vj+1Hj if hj+1,j 	= 0,
VjH̄j if hj+1,j = 0,

where H̄j is obtained from Hj by deleting the (j + 1)st row.
The iterates of the GMRES and Arnoldi methods applied to Ax = b are uniquely

determined by the matrices Vj and Hj . In the case of the GMRES method, an
approximate solution is defined at each iteration; in the case of the Arnoldi method,
an approximate solution may not be defined at every iteration, depending on A and
b. However, for both methods, with A invertible, the approximate solution is defined
and equal to the exact solution at some step if and only if Algorithm 2.1 terminates
at that step. In both methods, the approximate solution is computed only upon
termination. During the intermediate iterations, the value of the residual norm is
maintained recursively without computing the approximate solution, and termination
is based on this value, which we refer to below as the recursive residual norm.

To formulate our approximate finite-difference Arnoldi process, we consider a
Jacobian system

F ′(u)x = c(2.2)
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and outline a process analogous to Algorithm 2.1 that uses approximations of the
form (2.1). In this, we use “̃ ” to denote approximate counterparts of quantities in

Algorithm 2.1 that are derived from F̃ .
Algorithm 2.2: Approximate Finite-Difference Arnoldi Process

Given x0, set q0 = F̃ (u,u+σ0x0)−F (u)
σ0

and r̃0 = c− q0.
If r̃0 = 0, stop; otherwise, set ṽ1 = r̃0/‖r̃0‖.
For j = 1, 2, . . . , do:

Set qj =
F̃ (u,u+σj ṽj)−F (u)

σj
and w̃j = qj −

∑j
i=1 h̃ij ṽi,

where h̃ij = 〈qj , ṽi〉.
If h̃j+1,j ≡ ‖w̃j‖ = 0, stop; otherwise, set

ṽj+1 = w̃j/h̃j+1,j and continue.

If r̃0 	= 0, then the process terminates at step j > 0 if and only if h̃j+1,j = 0. For
each j up to termination, {ṽi}i=1,...,j is an orthonormal set; hence, termination must
occur for some j ≤ n.

The GMRES and Arnoldi methods applied to (2.2) can be based on Algorithm 2.2
in an obvious way. In particular, for each j, we define Ṽj ≡ (ṽ1, . . . , ṽj) and upper-
Hessenberg

H̃j ≡

⎛
⎜⎜⎜⎝

h̃11 · · · h̃1j

h̃21 · · · h̃2j

. . .
...

h̃j+1,j

⎞
⎟⎟⎟⎠ .

Then, like their counterparts Vj and Hj produced by Algorithm 2.1, the matrices Ṽj

and H̃j uniquely determine the iterates of the GMRES and Arnoldi methods based
on Algorithm 2.2. As before, the GMRES approximate solution is defined at every
iteration, but the Arnoldi approximate solution may not be.

We further define

e0 ≡ q0 − F ′(u)x0,

ei ≡ qi − F ′(u)ṽi, i = 1, . . . , j.
(2.3)

With the orthonormality of {ṽi}i=1,...,j , one easily verifies that

{F ′(u) + eiṽ
T
i }ṽi = qi, i = 1, . . . , j,

and, therefore,

{
F ′(u) + Ej

}
Ṽj = (q1, . . . , qj) =

{
Ṽj+1H̃j if h̃j+1,j 	= 0,

Ṽj
¯̃Hj if h̃j+1,j = 0,

(2.4)

where

Ej ≡ (e1, . . . , ej)Ṽ
T
j(2.5)

and ¯̃Hj ∈ R
j×j is obtained from H̃j by deleting the (j + 1)st row.

In view of (2.3)–(2.5), the following theorem is immediate.
Theorem 2.3. Suppose that, for some j ∈ {1, . . . , n}, Ṽj and H̃j have been

produced by j steps of Algorithm 2.2 with an initial x0. Then Ṽj and H̃j are the same
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as, respectively, Vj and Hj produced by j steps of Algorithm 2.1 with the same initial
x0 and with A = F ′(u) + Ej and b = c − e0 + Ejx0, where Ej and e0 are defined by
(2.3) and (2.5).

Proof. In Algorithm 2.2, one has ṽ1 = r̃0/‖r̃0‖ and, with (2.3),

r̃0 = c− q0 = c− e0 + Ejx0 − (F ′(u) + Ej)x0.

The theorem follows from this and (2.4).
Corollary 2.4. Suppose that, for some j ∈ {1, . . . , n}, the GMRES or Arnoldi

method based on Algorithm 2.2 has been applied to (2.2) for j steps. If F ′(u) + Ej

is invertible, then the approximate solution determined at step j by the method (if
defined) is the same as the approximate solution of the perturbed system{

F ′(u) + Ej

}
x = c− e0 + Ejx0(2.6)

determined at step j by the same method based on Algorithm 2.1. The approximate so-
lution at step j is defined and is the exact solution of (2.6) if and only if Algorithm 2.2
terminates at step j.

2.2. A local convergence analysis. Newton–Krylov methods are usually im-
plemented as inexact Newton methods [5], in which the Newton equation (1.2) is
replaced with an inexact Newton condition

‖F (u) + F ′(u)s‖ ≤ η‖F (u)‖,(2.7)

where η ∈ [0, 1). In a Newton–Krylov implementation, (2.7) normally provides a
criterion for terminating the Krylov iterations: one first chooses η ∈ [0, 1) and then
applies the Krylov solver to (1.2) until (2.7) holds. Used in this way, η is often called
a forcing term (cf. [7]). In the seminal paper [5], it is shown that the local convergence
of inexact Newton methods is determined by the forcing terms.

In the context of interest here, the Krylov solver is the GMRES or Arnoldi method
based on Algorithm 2.2, and the approximate solution it produces is actually that of
the perturbed linear system (2.6) with c = −F (u). Thus an accurate evaluation of
the linear residual norm ‖F (u) + F ′(u)s‖ is very likely to be undesirably expensive
or unavailable. If this is the case, then (2.7) cannot be used directly for terminating
the Krylov iterations. A likely course is to replace ‖F (u) + F ′(u)s‖ in (2.7) by the
recursive residual norm maintained by the Krylov solver. This leads to the following
algorithm.

Algorithm 2.5: Approximate Finite-Difference GMRES/Arnoldi

Newton–Krylov Method

Suppose that u0 is given.

For k = 0, 1, . . . , do:

Choose ηk ∈ [0, 1) and apply the GMRES or Arnoldi

method based on Algorithm 2.2 to F ′(uk)s = −F (uk) to

obtain an approximate solution sk for which the

recursive residual norm is less than or equal to ηk‖F (uk)‖.
Set uk+1 = uk + sk.

In the remainder of this subsection, we develop a local convergence analysis for
Algorithm 2.5. This culminates in our main result (Theorem 2.12) to the effect that,
near a solution of (1.2) at which the Jacobian is invertible, Algorithm 2.5 does not
break down and enjoys desirable convergence properties if the difference steps are
chosen sufficiently small and the forcing terms are chosen appropriately.
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We begin with Lemma 2.6 below, which shows that, if the recursive residual norm
satisfies a specified inexact Newton condition, then the actual residual norm satisfies
a related inexact Newton condition. This lemma is a perturbation result based on
Corollary 2.4. With c = −F (u), the perturbed linear system (2.6) can be viewed as
a specific instance of a more general perturbed linear system considered by Catinas
in [4]. Perturbation results are given in [4] that are somewhat similar in spirit to
Lemma 2.6 but are not as directly suited to our purposes.

For convenience in Lemma 2.6 and that which follows, we regard the initial resid-
ual norm as the recursive residual norm at step zero. Throughout the discussion,
e0 and Ej for j > 0 are defined by (2.3) and (2.5), with x0 the initial approximate
solution in the Krylov solver and with c = −F (u) in Algorithm 2.2.

Lemma 2.6. Suppose that η ∈ [0, 1) is given and that the GMRES or Arnoldi
method based on Algorithm 2.2 is applied to (1.2) until, for some j ∈ {0, . . . , n}, the
recursive residual norm is less than or equal to η‖F (u)‖ at step j. Let s denote the
approximate solution of (1.2) obtained by the method at step j. If j = 0, or if j > 0
and F ′(u) + Ej is invertible, then

‖F (u) + F ′(u)s‖ ≤ η̃‖F (u)‖,(2.8)

where

η̃ ≡

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

η +
‖e0‖

‖F (u)‖ if j = 0,

η + (1 + η)‖Ej(F
′(u) + Ej)

−1‖

+
[
1 + ‖Ej(F

′(u) + Ej)
−1‖

] ‖e0 − Ej x0‖
‖F (u)‖

if j > 0.

(2.9)

Remark. If the initial approximate solution x0 in the GMRES or Arnoldi method
is zero, as is usually the case in Newton–Krylov methods, then e0 = 0 and (2.9)
reduces to

η̃ ≡
{
η if j = 0,
η + (1 + η)‖Ej(F

′(u) + Ej)
−1‖ if j > 0.

(2.10)

Proof. If j = 0, then s = x0 in Algorithm 2.2, and, with q0 as in Algorithm 2.2,
we have

‖F (u) + F ′(u)s‖ ≤ ‖F (u) + q0‖ + ‖F ′(u)s− q0‖

≤ η‖F (u)‖ + ‖e0‖

=

(
η +

‖e0‖
‖F (u)‖

)
‖F (u)‖.

If j > 0, then, by using Corollary 2.4 with c = −F (u), we have

‖F (u) + F ′(u)s‖ ≤ ‖F (u) + e0 − Ej x0 + (F ′(u) + Ej) s‖

+ ‖Ej s‖ + ‖e0 − Ej x0‖

≤ η‖F (u)‖ + ‖Ej(F
′(u) + Ej)

−1‖ · ‖(F ′(u) + Ej) s‖

+ ‖e0 − Ej x0‖.

(2.11)
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Writing

(F ′(u) + Ej)s = −F (u) − e0 + Ejx0 + r, ‖r‖ ≤ η‖F (u)‖,

one verifies that

‖(F ′(u) + Ej)s‖ ≤ (1 + η)‖F (u)‖ + ‖e0 − Ej x0‖

=

(
1 + η +

‖e0 − Ej x0‖
‖F (u)‖

)
‖F (u)‖.

Substituting this in (2.11) and rearranging gives

‖F (u) + F ′(u)s‖ ≤
{
η + ‖Ej(F

′(u) + Ej)
−1‖ ·

(
1 + η +

‖e0 − Ej x0‖
‖F (u)‖

)

+
‖e0 − Ej x0‖

‖F (u)‖

}
‖F (u)‖

=

{
η + (1 + η)‖Ej(F

′(u) + Ej)
−1‖

+
[
1 + ‖Ej(F

′(u) + Ej)
−1‖

] ‖e0 − Ej x0‖
‖F (u)‖

}
‖F (u)‖.

We now formulate the first of two additional assumptions on F̃ and establish
Lemma 2.8 and Corollary 2.9 below, which will be helpful in developing our local con-
vergence results and also in justifying the assumptions in Lemma 2.6 near a solution
of (1.2) at which the Jacobian is invertible.

Assumption 2.7. There exists Ω ⊆ R
n such that

ω(σ) ≡ sup
u∈Ω, ‖v‖≤1

∥∥∥∥∥ F̃ (u, u + σv) − F (u)

σ
− F ′(u)v

∥∥∥∥∥(2.12)

satisfies ω∗ ≡ lim supσ→0 ω(σ) < ∞.
The role of Assumption 2.7 in that which follows is to ensure that approximations

of the form (2.1) are uniformly accurate when σ is appropriately small. We note that,

if this assumption holds with ω∗ = 0, then the Frechet derivative F̃w(u,w) ≡ ∂F̃ (u,w)
∂w

exists for u ∈ Ω and w = u and, moreover, F̃w(u, u) = F ′(u) for u ∈ Ω.
Lemma 2.8. Suppose that Assumption 2.7 holds and that u∗ ∈ Ω is such that

F ′(u∗) is invertible and

n‖F ′(u∗)
−1‖ω∗ < 1/2.(2.13)

Then, for any ε such that

n‖F ′(u∗)
−1‖ω∗

1 − n‖F ′(u∗)−1‖ω∗
< ε < 1,(2.14)

there exist δ > 0 and σ∗ > 0 such that if u ∈ B(u∗, δ) and, for some j ∈ {1, . . . , n},
Algorithm 2.2 has been applied with 0 < |σi| ≤ σ∗ for i = 1, . . . , j, then F ′(u) + Ej

is invertible, and

‖Ej(F
′(u) + Ej)

−1‖ ≤ ε.(2.15)
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Moreover, there is a λ independent of j and u for which

‖Ej(F
′(u) + Ej)

−1‖ ≤ λ max
1≤i≤j

ω(σi) .(2.16)

Proof. Since F is continuously differentiable and F ′(u∗) is invertible, there ex-
ists δ > 0 such that B(u∗, δ) ⊂ Ω, F ′(u) is invertible whenever u ∈ B(u∗, δ), and
supu∈B(u∗,δ) ‖F ′(u)−1‖ < ∞. Moreover, in view of (2.13) and (2.14), we can choose δ

and σ∗ > 0 sufficiently small to have n‖F ′(u)−1‖ω(σ) ≤ 1/2 and

n‖F ′(u)−1‖ω(σ)

1 − n‖F ′(u)−1‖ω(σ)
≤ ε(2.17)

whenever u ∈ B(u∗, δ) and 0 < |σ| ≤ σ∗. Note that, for 0 < |σ| ≤ σ∗, (2.17) implies
that

ω(σ) ≤ ε

(1 + ε)n‖F ′(u)−1‖ .(2.18)

Suppose that u ∈ B(u∗, δ) and that Algorithm 2.2 has been applied with 0 <
|σi| ≤ σ∗ for i = 1, . . . , j. Then

‖Ej‖ = max
‖v‖=1

‖Ejv‖ = max
‖v‖=1

‖(e1, . . . , ej)Ṽ
T
j v‖

= max
‖v‖=1

∥∥∥∥∥
j∑

i=1

〈ṽi, v〉 ei

∥∥∥∥∥ ≤ max
‖v‖=1

j∑
i=1

| 〈ṽi, v〉 | ‖ei‖

≤
∑j

i=1 ‖ei‖

(2.19)

since | 〈ṽi, v〉 | ≤ ‖ṽi‖ ‖v‖ = 1. Since

‖ei‖ = ‖qi − F ′(u)ṽi‖ =

∥∥∥∥∥ F̃ (u, u + σiṽi) − F (u)

σi
− F ′(u)ṽi

∥∥∥∥∥ ≤ ω(σi)

for each i, it follows from (2.19) and (2.18) that

‖Ej‖ ≤ j max
1≤i≤j

ω(σi) ≤ n max
1≤i≤j

ω(σi) ≤
ε

(1 + ε)‖F ′(u)−1‖ .(2.20)

From (2.20), we have

‖EjF
′(u)−1‖ ≤ ‖Ej‖ ‖F ′(u)−1‖ ≤ ε

1 + ε
< 1,(2.21)

and it follows by using well-known arguments (see, e.g., [6, Thm. 3.1.4]) that I +
EjF

′(u)−1 is invertible and∥∥∥(I + EjF
′(u)−1

)−1
∥∥∥ ≤ 1

1 − ε/(1 + ε)
= 1 + ε.(2.22)

Consequently, F ′(u) + Ej = (I + EjF
′(u)−1)F ′(u) is invertible, and∥∥Ej(F

′(u) + Ej)
−1
∥∥ =

∥∥∥EjF
′(u)−1

(
I + EjF

′(u)−1
)−1

∥∥∥
≤ ‖EjF

′(u)−1‖ ‖
(
I + EjF

′(u)−1
)−1 ‖

≤ ε

1 + ε
· (1 + ε) = ε .

(2.23)
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To complete the proof, one easily verifies from the inequalities in (2.18)–(2.23)
that

‖Ej(F
′(u) + Ej)

−1‖ ≤ n max
1≤i≤j

ω(σi) ‖F ′(u)−1‖ (1 + ε) .

It follows that (2.16) holds with λ = n supu∈B(u∗,δ) ‖F ′(u)−1‖ (1 + ε).
Corollary 2.9. Suppose that Assumption 2.7 holds and that u∗ ∈ Ω is such that

F ′(u∗) is invertible and F ′(u∗)
−1 satisfies (2.13). Then there exist δ > 0 and σ∗ > 0

such that if u ∈ B(u∗, δ) and the GMRES or Arnoldi method based on Algorithm 2.2
is applied to (1.2) with 0 < |σj | ≤ σ∗ for each j, then for some j ∈ {0, . . . , n} the
approximate solution obtained by the method at step j is defined and the recursive
residual norm is zero. In particular, given any η ∈ [0, 1), the method determines at
some step an approximate solution for which the recursive residual norm is less than
or equal to η‖F (u)‖.

Proof. Suppose that the GMRES or Arnoldi method based on Algorithm 2.2 is
applied to (1.2). If r̃0 = 0, then there is nothing to prove. If r̃0 	= 0, then Algorithm 2.2
terminates for some j ∈ {1, . . . , n}. By Lemma 2.8, there exist δ > 0 and σ∗ > 0 such
that if u ∈ B(u∗, δ) and 0 < |σi| ≤ σ∗ for i = 1, . . . , j, then F ′(u) + Ej is invertible.
Consequently, assuming u ∈ B(u∗, δ) and 0 < |σi| ≤ σ∗ for i = 1, . . . , j, one has from
Corollary 2.4 that the approximate solution determined by the method at step j is
defined and is the exact solution of the perturbed system

{
F ′(u) + Ej

}
x = −F (u) − e0 + Ejx0.(2.24)

Since the recursive residual norm is the norm of the residual of (2.24), it follows that
the recursive residual norm is zero.

We use the following somewhat specialized assumption of Hölder continuity of
F̃w. For a general definition of Hölder continuity, see, e.g., [14, section 3.1.9].

Assumption 2.10. With Ω as in Assumption 2.7, there is a δΩ > 0 such that
F̃w(u, u+ v) exists for all u ∈ Ω and all v with ‖v‖ ≤ δΩ. Moreover, there exist γ and
p ∈ (0, 1] such that

‖F̃w(u, u + v) − F̃w(u, u)‖ ≤ γ‖v‖p

for all u ∈ Ω and all v with ‖v‖ ≤ δΩ.
Lemma 2.11. Suppose that Assumption 2.7 holds with ω∗ = 0 and that Assump-

tion 2.10 also holds. Then ω(σ) given by (2.12) satisfies

ω(σ) ≤ μ |σ|p(2.25)

for sufficiently small |σ| and μ = γ(δΩ)1+p/(1 + p).
Proof. Assume for convenience that σ > 0. (The proof requires only trivial

changes when σ < 0.) By recalling that ω∗ = 0 implies F ′(u) = F̃w(u, u) and adapting
familiar reasoning (see, e.g., [14, section 3.2.12]), we have for u ∈ Ω, ‖v‖ ≤ δΩ, and
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sufficiently small σ > 0 that

‖F̃ (u, u + σv) − F (u) − σF ′(u)v‖ =

∥∥∥∥
{∫ σ

0

[F̃w(u, u + τv) − F̃w(u, u)] dτ

}
v

∥∥∥∥
≤
{∫ σ

0

‖F̃w(u, u + τv) − F̃w(u, u)‖ dτ
}

‖v‖

≤
{∫ σ

0

γτp dτ

}
‖v‖1+p

=
γ

1 + p
σ1+p‖v‖1+p ≤ γ(δΩ)1+p

1 + p
σ1+p,

which immediately yields (2.25).
The theorem below is our local convergence result for Algorithm 2.5. It can

be viewed as a counterpart of Theorems 2.3 and 3.3 of [5], which are used in its
proof. For definitions of the types of convergence referred to in the theorem, see, e.g.,
[6]. For convenience, we denote by σjk the jth difference step used by the GMRES
or Arnoldi method at the kth iteration of Algorithm 2.5. We also assume that, at
each iteration of Algorithm 2.5, the GMRES or Arnoldi method begins with the zero
initial approximate solution, and, therefore, the applicable perturbation result from
Lemma 2.6 is (2.8) followed by (2.10) rather than (2.9).

Theorem 2.12. Suppose that Assumption 2.7 holds and that u∗ ∈ Ω is such that
F (u∗) = 0, F ′(u∗) is invertible, and n‖F ′(u∗)

−1‖ω∗ < 1/2. Then for any t∗ and η∗
such that

μ∗ ≡ n‖F ′(u∗)
−1‖ω∗

1 − n‖F ′(u∗)−1‖ω∗
< t∗ < 1 and 0 ≤ η∗ <

t∗ − μ∗
1 + μ∗

,(2.26)

there exist δ∗ > 0 and σ∗ > 0 such that if u0 ∈ B(u∗, δ∗), 0 ≤ ηk ≤ η∗ for each k,
and 0 < |σjk| ≤ σ∗ for each j and k, then Algorithm 2.5 produces {uk}k=0,1,... that
converges to u∗ with

‖uk+1 − u∗‖∗ ≤ t∗‖uk − u∗‖∗(2.27)

for each k, where ‖v‖∗ ≡ ‖F ′(u∗)v‖ for v ∈ R
n. Additionally, if ω∗ = 0 and if

ηk → 0 and maxj |σjk| → 0 as k → ∞, then the convergence is q-superlinear. If
Assumption 2.10 also holds, F ′ is Hölder continuous with exponent p at u∗, and
ηk = O(‖F (uk)‖p) and maxj |σjk| = O(‖F (uk)‖) as k → ∞, then the convergence is
of q-order 1 + p.

Proof. Suppose that t∗ and η∗ satisfy (2.26). Let ε be such that μ∗ < ε < t∗ and
η∗ < (t∗ − ε)/(1 + ε). Note that ηmax ≡ η∗ + (1 + η∗)ε < t∗. By [5, Thm. 2.3], there
is a δ∗ > 0 such that any sequence {uk}k=0,1,... for which u0 ∈ B(u∗, δ∗) and

uk+1 = uk + sk

‖F (uk) + F ′(uk)sk‖ ≤ ηmax‖F (uk)‖

}
k = 0, 1, . . .

satisfies (2.27) for each k and converges to u∗.
Let δ > 0 and σ∗ > 0 be chosen so that the conclusions of Lemma 2.8 and

Corollary 2.9 hold. Let M be such that

1

M
‖v‖ ≤ ‖v‖∗ ≤ M‖v‖
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for all v ∈ R
n. By taking δ∗ smaller if necessary, assume that M2δ∗ < δ. Suppose that

Algorithm 2.5 is applied with u0 ∈ B(u∗, δ∗), 0 ≤ ηk ≤ η∗ for all k, and 0 < |σjk| ≤ σ∗
for all j and k. If, for some k ≥ 0, the algorithm has determined {uj}j=0,...,k ⊆
B(u∗, δ), then, at step k of the algorithm, it follows from Corollary 2.9 that the
GMRES or Arnoldi method based on Algorithm 2.2 determines at some iteration an
approximate solution sk for which the recursive residual norm is less than or equal to
ηk‖F (uk)‖. Then uk+1 is defined. Moreover, with Lemmas 2.8 and 2.6, we have, by
using (2.8)–(2.10) and (2.15), that

‖F (uk) + F ′(uk)sk‖ ≤ [ηk + (1 + ηk)ε] ‖F (uk)‖ ≤ ηmax‖F (uk)‖,

and we can apply (2.27) to obtain

‖uk+1 − u∗‖ ≤ M‖uk+1 − u∗‖∗ ≤ Mtk+1
∗ ‖u0 − u∗‖∗

≤ M2tk+1
∗ ‖u0 − u∗‖ < M2δ∗ < δ.

It follows inductively that Algorithm 2.2 produces {uk}k=0,1,... ⊆ B(u∗, δ) that con-
verges to u∗, with (2.27) holding for each k.

Assuming u0 ∈ B(u∗, δ∗), we also have from (2.8)–(2.10) and (2.16) that

‖F (uk) + F ′(uk)sk‖ ≤ [ηk + (1 + ηk)λ max
j

ω(σjk)] ‖F (uk)‖(2.28)

for each k, where λ is independent of k. Consequently, if ω∗ ≡ limσ→0 ω(σ) = 0
and if ηk → 0 and maxj |σjk| → 0 as k → ∞, then it follows from [5, Thm. 3.3]
that {uk}k=0,1,... converges to u∗ q-superlinearly. If Assumption 2.10 also holds, then
(2.28) and (2.25) yield

‖F (uk) + F ′(uk)sk‖ ≤ [ηk + (1 + ηk)λμ (max
j

|σjk|)p] ‖F (uk)‖ ,

where μ is independent of k. It follows from [5, Thm. 3.3] that, if ηk = O(‖F (uk)‖p)
and maxj |σjk| = O(‖F (uk)‖) as k → ∞, then the convergence is of q-order
1 + p.

Remark. The framework and analysis given above cover the case in which F =
F1 + F2, where F1 and F2 are differentiable and such that, for each u and v, F ′

1(u)v
can be readily evaluated but F ′

2(u)v must be approximated with a finite difference.1

Indeed, setting F̃ (u,w) ≡ F1(u) + F ′
1(u)(w − u) + F2(w), we obtain

F̃ (u, u + σv) − F (u)

σ
= F ′

1(u)v +
F2(u + σv) − F2(u)

σ
.

Then Assumption 2.7 becomes

ω∗ ≡ sup
u∈Ω, ‖v‖≤1

∥∥∥∥F2(u + σv) − F2(u)

σ
− F ′

2(u)v

∥∥∥∥ < ∞,

and Assumption 2.10 becomes an assumption of Hölder continuity of F ′
2(u). With

this understanding, it is straightforward to apply Corollary 2.9 and Theorem 2.12.

3. Numerical experiments. In this section we first describe the test problems
considered. We then focus on two possible choices for F̃ and analyze to what degree
they satisfy Assumptions 2.7 and 2.10. Finally, we present numerical results obtained
with these choices on the test problems.

1This case can also be addressed with a modest extension of the results in [3].
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Table 1

Test cases.

Test case D(u)

1
√
u2 + u + 1

2 1√
u2+u+1

3 u3/5eu

4 K
√

S(u)[1 − (1 − S(u)
1
μ )μ]2, where S(u) = (1 + |αu|ν)−μ

and K,α, μ, ν are constants

3.1. Test problems. The test problems are of the form

F(u) ≡ ∇ ·D(u)∇u− g(u) + f = 0.(3.1)

This class of nonlinear diffusion problems arises in many applications, such as flow
through porous media, radiation transport, phase transition, biochemistry, and dy-
namics of biological groups. In our experiments, we considered these problems on
square domains in R

2 with homogeneous Dirichlet boundary conditions.
We are motivated by circumstances in which g-evaluations are inexpensive, but D-

evaluations are relatively costly, and less expensive approximations may be desirable.
In our experiments, we considered four choices for D, labeled test cases 1–4 in Table 1.
For cases 1–3, we chose g(u) ≡ u2. In case 4, we used g(u) ≡ 0. Except in test case 4,
we took the domain to be [0, 1] × [0, 1] and chose f so that the solution of (3.1) was
uc(x, y) ≡ cx(1−x)y(1− y), with c = 1, 2, 5, and 10. Choosing f in this way allowed
us to determine success or failure with certainty and also to exercise some control
over the magnitude of the solution and its derivatives. Test case 4 was inspired by a
formulation of Richards’s equation describing fluid flow in unsaturated porous media
that appeared in [13]. In this case, the domain was [0, 1

2 ] × [0, 1
2 ] and f was chosen

so that the solution was uc(x, y) ≡ c
4x(1 − 2x)y(1 − 2y) + β, where β > 0 is a small

constant chosen to avoid singularities (β = 1
16 in the experiments reported here) and

again c = 1, 2, 5, and 10.
In our tests, (3.1) was discretized by using central differences on an m ×m grid

of regularly spaced interior points with grid spacing h = 1/(m + 1) in test cases 1–3
and h = 1/2(m + 1) in test case 4. The resulting system of equations is

Fi,j(u) ≡ 1

h2

[
D

(
ui+1,j + ui,j

2

)
(ui+1,j − ui,j) −D

(
ui,j + ui−1,j

2

)
(ui,j − ui−1,j)

+D

(
ui,j+1 + ui,j

2

)
(ui,j+1 − ui,j) −D

(
ui,j + ui,j−1

2

)
(ui,j − ui,j−1)

]
(3.2)

− g(ui,j) + f(xi, yj) = 0

for 1 ≤ i ≤ m and 1 ≤ j ≤ m, where (xi, yj) denotes the ijth grid point and
ui,j denotes the approximate solution there. (The boundary conditions give u0,j =
um+1,j = ui,0 = ui,m+1 = 0.) We denote this system by F (u) = 0, where, for
convenience, u denotes the vector of ui,j ’s as well as the solution of (3.1).

3.2. Choices of F̃ . In our experiments, we considered two illustrative choices
of F̃ based on our motivating assumption that D-evaluations are significantly more
expensive than g-evaluations. (Other choices of F̃ are possible; see the remark at
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the end of this subsection.) We refer to these choices as the “lagged” and “linear”
approximations of F and denote them by F̃Lag(u,w) and F̃Lin(u,w), respectively.
These correspond to the respective approximations

F̃Lag(u,w) ≡ ∇ ·D(u)∇w − g(w) + f

and

F̃Lin(u,w) ≡ ∇ · [D(u) + D′(u)(w − u)]∇w − g(w) + f

of F in the continuous problem (3.1). They are defined by respective ijth components

F̃Lag
i,j (u,w)

≡ 1

h2

[
D

(
ui+1,j + ui,j

2

)
(wi+1,j − wi,j) −D

(
ui,j + ui−1,j

2

)
(wi,j − wi−1,j)

+D

(
ui,j+1 + ui,j

2

)
(wi,j+1 − wi,j) −D

(
ui,j + ui,j−1

2

)
(wi,j − wi,j−1)

]

− g(wi,j) + f(xi, yj),

(3.3)

F̃Lin
i,j (u,w)

≡ 1

h2

{[
D

(
ui+1,j + ui,j

2

)
+

1

2
D′

(
ui+1,j + ui,j

2

)
(wi+1,j + wi,j − ui+1,j − ui,j)

]

· (wi+1,j − wi,j)

−
[
D

(
ui,j + ui−1,j

2

)
+

1

2
D′

(
ui,j + ui−1,j

2

)
(wi,j + wi−1,j − ui,j − ui−1,j)

]

· (wi,j − wi−1,j)(3.4)

+

[
D

(
ui,j+1 + ui,j

2

)
+

1

2
D′

(
ui,j+1 + ui,j

2

)
(wi,j+1 + wi,j − ui,j+1 − ui,j)

]

· (wi,j+1 − wi,j)

−
[
D

(
ui,j + ui,j−1

2

)
+

1

2
D′

(
ui,j + ui,j−1

2

)
(wi,j + wi,j−1 − ui,j − ui,j−1)

]

· (wi,j − wi,j−1)

}
− g(wi,j) + f(xi, yj).

It is clear that both F̃Lag(u,w) and F̃Lin(u,w) satisfy F̃ (u, u) = F (u). To apply
the theoretical results obtained in the previous section, we must determine whether
they also satisfy Assumptions 2.7 and 2.10. To facilitate verifying these assumptions,
we note that the discrete problem (3.2) is a particular case of the model problem

F (u) ≡ A(u)u− b(u) + c = 0,(3.5)

where u ∈ R
n, A(u) ∈ R

n×n has continuously differentiable entries aij(u), and b(u) ∈
R

n has continuously differentiable components bi(u). For this model problem, we
have that

F ′(u)v = A(u)v + [A′(u)v]u− b′(u)v,
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where [A′(u)v] ∈ R
n×n has entries [A′(u)v]ij = ∇aij(u)T v and ∇aij(u) denotes the

gradient of aij(u) with respect to u. We define

F̃Lag(u,w) ≡ A(u)w − b(w) + c,(3.6)

F̃Lin(u,w) ≡ (A(u) + [A′(u)(w − u)])w − b(w) + c.(3.7)

We show the following results for problem (3.5) and the approximations (3.6)–(3.7).
Theorem 3.1. Let F , F̃Lag, and F̃Lin be defined by (3.5)–(3.7). Then

F̃Lag(u, u + σv) − F (u)

σ
− F ′(u)v = −[A′(u)v]u−

[
b(u + σv) − b(u)

σ
− b′(u)v

]
(3.8)

and

F̃Lin(u, u + σv) − F (u)

σ
− F ′(u)v = σ[A′(u)v]v −

[
b(u + σv) − b(u)

σ
− b′(u)v

]
.(3.9)

If, in addition, there exists an Ω ⊆ R
n such that, for all u ∈ Ω, |∂aij(u)/∂uk| ≤ C1 <

∞ and |∂bi(u)/∂uj | ≤ C2 < ∞ for all i, j, k ∈ {1, . . . , n} and some constants C1 and

C2, then both F̃Lag and F̃Lin satisfy Assumption 2.7 with ωLag
∗ < ∞ for F̃Lag and

ωLin
∗ = 0 for F̃Lin.

Proof. The proof follows by substituting the definitions of the lagged and linear
approximations into the above expressions and then deleting appropriate terms.

Theorem 3.2. Let the assumptions regarding F̃Lin in Theorem 3.1 hold. In
addition, assume that there exist γ and p ∈ (0, 1] such that

‖b′(u + v) − b′(u)‖ ≤ γ‖v‖p

for all u ∈ Ω and all v, with ‖v‖ ≤ δΩ. Then Assumption 2.10 holds for F̃Lin with
the same value of p.

Proof. We first show that, for any v,

F̃Lin
w (u,w)v = A(u)v + [A′(u)(w − u)]v + [A′(u)v]w − b′(w)v.

We have

σ−1
[
F̃Lin(u,w + σv) − F̃Lin(u,w)

]
= σ−1 [(A(u) + [A′(u)(w + σv − u)])(w + σv) − (A(u) + [A′(u)(w − u)])w]

−σ−1 [b(w + σv) − b(w)]

= A(u)v + [A′(u)(w − u)]v + [A′(u)v](w + σv) − σ−1 [b(w + σv) − b(w)] .

Letting σ → 0 gives the result. Next, for any vector v̂

F̃Lin
w (u, u + v)v̂ − F ′(u)v̂

= A(u)v̂ + [A′(u)v]v̂ + [A′(u)v̂](u + v) − b′(u + v)v̂

−A(u)v̂ − [A′(u)v̂]u + b′(u)v̂

= [A′(u)v]v̂ + [A′(u)v̂]v − (b′(u + v) − b′(u))v̂.

Letting ‖ · ‖F denote the Frobenius norm on R
n×n, we have

‖[A′(u)v]‖F =

⎛
⎝ n∑

i,j=1

(∇aij(u)T v)2

⎞
⎠

1/2

≤ ‖v‖

⎛
⎝ n∑

i,j=1

‖∇aij(u)‖2

⎞
⎠

1/2

≤ K · ‖v‖
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for some constant K since |∂aij(u)/∂uk| ≤ C1 < ∞ for all i, j, k = 1, . . . , n. Thus,

‖F̃Lin
w (u, u + v)v̂ − F ′(u)v̂‖ ≤ 2K · ‖v‖ · ‖v̂‖ + ‖b′(u + v) − b′(u)‖ · ‖v̂‖

≤ 2K · ‖v‖ · ‖v̂‖ + γ‖v‖p · ‖v̂‖

=
(
2Kδ1−p

Ω + γ
)
‖v‖p · ‖v̂‖

for any vector v̂. Therefore,

‖F̃Lin
w (u, u + v) − F ′(u)‖ ≤

(
2Kδ1−p

Ω + γ
)
‖v‖p

for all u ∈ Ω and all v with ‖v‖ ≤ δΩ, which completes the proof.
For the discrete problem (3.2), a short computation reveals that F̃Lag and F̃Lin

given by (3.3) and (3.5) both satisfy the assumptions of Theorem 3.1 if there exists
a convex set Ω such that |D′(u)| and |g′(u)| are uniformly bounded for u ∈ Ω. Addi-
tionally, F̃Lin satisfies the assumptions of Theorem 3.2 if g′(u) is Hölder continuous
in Ω. Thus, under these mild assumptions, the local convergence results in section
2.2 can be applied to these two cases.

We note that using F̃ = F̃Lag given by (3.3) requires minimal new calculations at
each step of the linear solve in Algorithm 2.5. Indeed, each step requires only one g-
evaluation at each grid point in addition to a very modest amount of arithmetic, since
the necessary D- and f -values are already available. Thus, the computational effort
required to implement F̃Lag is so small that the time savings may be considerable for
problems for which convergence can be achieved with this approximation.

Using F̃ = F̃Lin given by (3.5) in Algorithm 2.5 requires evaluating D′ at points
intermediate to the grid points, which may be problematic if D′-evaluations are ex-
pensive or unavailable. However, this needs to be done only once at the outset of
each linear solve and, in many applications, may be no more difficult than evaluating
D at those points. Once the necessary D′-values have been computed, each step of
the linear solve requires the same g-evaluations as F̃Lag together with a somewhat
greater but still very modest amount of arithmetic.

Remark. One of the referees suggested an alternative to (3.7) in defining F̃Lin for
the model problem (3.5), viz.,

F̃Lin(u,w) = A(u)w + [A′(u)(w − u)]u− b(w) + c.(3.10)

This has the error term

F̃Lin(u, u + σv) − F (u)

σ
− F ′(u)v = −

[
b(u + σv) − b(u)

σ
− b′(u)v

]
,

which is slightly simpler than (3.9). Implementing this F̃Lin on the discrete problem
(3.2) has essentially the same cost as implementing F̃Lin given by (3.7). With this
F̃Lin, the analysis in section 2.2 can be applied as in the remark at the end of section
2.2 by writing F in (3.5) as F = F1+F2, where F1(u) ≡ A(u)u and F2(u) ≡ −b(u)+c.
Then (3.10) becomes

F̃Lin(u,w) = F1(u) + F ′
1(u)(w − u) + F2(w),

and Assumptions 2.7 and 2.10 become assumptions on F2 and, hence, on b as in the
remark at the end of section 2.2.
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Table 2

Key to abbreviations.

Abbreviation Meaning

NEQ Number of equations (unknowns)

NNI Number of nonlinear iterations

NLI Number of linear iterations

3.3. Numerical results. In our numerical experiments, the test problems de-
scribed above were treated by applying the KINSOL Newton–Krylov code from the
SUNDIALS suite [10]; see [10] for details of the algorithm not specified here. KINSOL
was applied in matrix-free mode with modifications to allow the approximation (2.1)
with F̃ = F̃Lag and F̃ = F̃Lin to be used in place of (1.4). The linear solver used
was GMRES with a banded block-diagonal preconditioner provided by SUNDIALS
using finite differences of F -values; see [10]. The linear and nonlinear solver specifica-
tions were as follows: the maximum number of GMRES iterations allowed was 100,
with no restarts; each forcing term ηk was the constant 10−3; the nonlinear iterations
terminated successfully if ‖F (uk)‖ ≤ 10−8. These tight tolerances were chosen to
bring out performance differences resulting from the different choices of F̃ . Addition-
ally, failure was declared if either the number of nonlinear iterations exceeded 200 or
‖sk‖ ≤ 10−13; however, these failure modes were not observed in our tests.

All runs were done on the ASC Frost machine at Lawrence Livermore National
Laboratory, an IBM SP parallel platform running the AIX operating system with 1088
375 MHz processors grouped into 16-processor nodes. In each of our runs, the spatial
domain was subdivided into a p×p array of square subdomains having an equal number
of grid points, and the grid points in each subdomain were mapped to one processor.

In test cases 1–3, the domain was divided into 400 × 400 zones yielding 160, 000
unknowns. In test case 4, a smaller problem was also considered, in which the domain
was divided into 200× 200 zones yielding 40,000 unknowns. In all cases, the grid was
adjusted so that the number of grid points per subdomain (and processor) was always
10,000. Thus, for the 160,000-unknown problems, 16 processors were used, and four
were used for the smaller test case 4 problem.

The results of our runs are given in the tables below. A key to the abbreviations
used in these tables is provided in Table 2. In Tables 3–6, “None” refers to using
no approximation, i.e., using (1.4); “Linear” and “Lagged” refer to using F̃ = F̃Lag

and F̃ = F̃Lin, respectively, in (2.1). Run times are given in seconds, and each
normalized run time is calculated by dividing the run time by that obtained by using
no approximation.

3.3.1. Case 1: D(u) =
√

u2 + u + 1. This choice for D is the least expensive
to evaluate of all of those we experimented with, and so we expected the time savings
using the approximations F̃Lag and F̃Lin to be less significant than in the other test
problems. Recall that the problem was posed so that the exact solution was uc(x, y) =
cx(1 − x)y(1 − y). Here we took c = 10 with the initial approximate solution u0 ≡ c.
(No significant additional information was gained in this case by considering the other
values of c.) The results are given in Table 3. There were no unsuccessful runs in this
case.

As expected, since D is not very expensive to evaluate, using the approximations
F̃Lag and F̃Lin did not significantly reduce computational time. In fact, the lagged ap-
proximation required more GMRES iterations and, consequently, more run time than
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Table 3

Case 1: D(u) =
√
u2 + u + 1, c = 10.

Norm.

F̃ approx. NNI NLI Run time run time

None 9 416 38.2 1.00

Linear 9 417 35.3 0.92

Lagged 9 530 43.8 1.15

Table 4

Case 2: D(u) = 1√
u2+u+1

.

Norm.

c F̃ approx. NNI NLI Run time run time

None 7 329 32.7 1.00

1 Linear 7 331 30.3 0.93

Lagged 6 323 29.1 0.89

None 12 387 41.1 1.00

2 Linear 12 387 38.2 0.93

Lagged 8 442 37.7 0.92

None 7 329 32.1 1.00

5 Linear 7 329 29.5 0.92

Lagged 8 436 37.1 1.16

None 7 345 33.7 1.00

10 Linear 7 343 30.8 0.91

Lagged 10 566 47.2 1.40

the two alternatives, apparently because of less compatibility between the approxi-
mate Jacobian-vector products obtained with F̃Lag and the preconditioner provided
by SUNDIALS using exact F -values. Consistent with the theory, there is very close
agreement between the numbers of nonlinear and linear iterations obtained by using
F̃Lin and those obtained by using no approximation.

3.3.2. Case 2: D(u) = 1√
u2+u+1

. This choice for D is only slightly more

expensive to evaluate than the choice in Case 1; however, there are some notable
differences in the computational results. For c = 1 and c = 2, we took u0 ≡ c as in
Case 1. However, for c = 5 and c = 10, we took u0 ≡ 1; this was necessary in order
to obtain convergence to the solution, even when no approximation was used. With
these choices of u0, all runs were successful. The results are shown in Table 4.

This choice for D is interesting because the results with the lagged approximation
F̃Lag show sensitivity to the value of c. As c gets larger, the lagged approximation
becomes less accurate, and, as a result, its performance degrades. The results obtained
by using the linear approximation F̃Lin are similar to those in Case 1. Again we note
very close agreement between the numbers of linear and nonlinear iterations obtained
by using F̃Lin and those obtained by using no approximation.

3.3.3. Case 3: D(u) = u
3
5 eu. This choice for D entails the largest values of

D′(u) at the solutions uc(x, y) = cx(1 − x)y(1 − y), and so we expected differences
in the effectiveness of F̃Lag and F̃Lin as approximations in (2.1) to be significant and
to become increasingly pronounced as c increases. We took the initial approximate
solution to be u0 ≡ c for each value of c. With this u0, there were two failures when
F̃Lag was used. The results are given in Table 5.
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Table 5

Case 3: D(u) = u
3
5 eu.

Norm.

c F̃ Approx. NNI NLI Run time run time

None 16 600 103.4 1.00

1.0 Linear 16 598 81.5 0.79

Lagged 33 2374 273.6 2.65

None 17 645 110.0 1.00

2.0 Linear 17 632 85.1 0.77

Lagged 35 2503 287.0 2.61

None 19 771 124.8 1.00

5.0 Linear 19 782 98.0 0.79

Lagged - - - -

None 23 1201 199.2 1.00

10.0 Linear 23 1199 152.4 0.77

Lagged - - - -

The results in Table 5 are consistent with our expectations. The lagged approxi-
mation resulted in failures of the method and greatly increased run times when it did
not fail. (The failures resulted from GMRES failing to produce the requested residual
norm reduction within the allowable 100 iterations.) In contrast, the linear approxi-
mation led to success in every case and to significant reductions in run times. For all
values of c, as seen in the previous cases, there is very close agreement between the
numbers of linear and nonlinear iterations obtained by using F̃Lin and those obtained
by using no approximation.

3.3.4. Case 4: D(u) = K
√

S(u)[1 − (1 − S(u)
1
μ )μ]2. This problem is

the most realistic of all of those considered here, and, of all of the choices for D,
this is the most expensive to evaluate. The problem is related to a formulation of
Richards’s equation, which is often used for modeling fluid flows in unsaturated porous
media. Here we chose values of the parameters appropriate for groundwater flow in
an unsaturated dune sand (see [13] and the references therein), as follows: K = 5.040,
α = 5.470, ν = 4.264, and μ = ν−1

ν . In each test case, we began with u0 ≡ β = 1
16 ,

for which all runs were successful. Results are given in Table 6.
As in the previous cases, there is very close agreement between the numbers of

linear and nonlinear iterations obtained by using the linear approximation and those
obtained by using no approximation. For the linear approximation, the greater run-
time reductions on the larger problems are notable and likely reflect the benefit of
amortizing the cost of evaluating D′ over larger numbers of GMRES iterations per
inexact Newton step. While not as effective as the linear approximation, the lagged
approximation, for all values of c except 10, also resulted in significantly reduced run
times, with greater reductions on the larger problems, which required many more
GMRES iterations per inexact Newton step than the smaller problems.

4. Summary and conclusions. We have considered Newton–Krylov methods
for solving (1.1) in which the matrix-vector products required by the Krylov solver
are approximated by finite differences of the form (2.1) involving an approximating
function F̃ ≈ F . The particular Krylov subspace methods considered are the GM-
RES and Arnoldi methods, which are based on the Arnoldi process (Algorithm 2.1);
however, the developments here should also be helpful when other Krylov subspace
methods are of interest.
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Table 6

Case 4: D(u) = K
√

S(u)[1 − (1 − S(u)
1
μ )μ]2.

Norm.

NEQ c F̃ approx. NNI NLI Run time run time

None 4 107 98.5 1.00

40,000 1.0 Linear 4 105 79.9 0.81

Lagged 4 104 79.2 0.80

None 4 220 141.2 1.00

160,000 1.0 Linear 4 220 102.3 0.72

Lagged 4 223 101.6 0.72

None 4 109 99.2 1.00

40,000 2.0 Linear 4 104 79.9 0.81

Lagged 5 135 84.8 0.85

None 4 215 139.0 1.00

160,000 2.0 Linear 4 215 101.5 0.73

Lagged 5 280 113.1 0.81

None 5 138 110.4 1.00

40,000 5.0 Linear 5 139 87.1 0.79

Lagged 6 163 90.3 0.82

None 5 278 163.6 1.00

160,000 5.0 Linear 5 278 114.2 0.70

Lagged 6 330 122.6 0.75

None 5 144 112.9 1.00

40,000 10.0 Linear 5 147 88.8 0.79

Lagged 8 232 103.6 0.92

None 5 281 162.7 1.00

160,000 10.0 Linear 5 289 115.7 0.71

Lagged 9 514 156.9 0.96

In Algorithm 2.2, we formulate an Arnoldi process that uses approximate finite
differences of the form (2.1) on a Jacobian system (2.2), and we consider the GMRES
and Arnoldi methods applied to (2.2) that are based on this process. In Theorem 2.3
and Corollary 2.4, it is shown that an approximate solution of (2.2) determined at
some step of the GMRES or Arnoldi method based on Algorithm 2.2 is the same as
the approximate solution of the perturbed system (2.6) obtained at the same step of
the method based on Algorithm 2.1.

In Algorithm 2.5, we outline a Newton–Krylov method that uses the GMRES
or Arnoldi method based on Algorithm 2.2. Our main result for Algorithm 2.5 is
Theorem 2.12, which can be viewed as a counterpart of results in [5, Thms. 2.3 and
3.3]. This theorem asserts that, under Assumption 2.7 on the approximating function
F̃ as well as mild assumptions on F , the iterates produced by Algorithm 2.5 converge
to a solution locally and q-linearly in a certain norm, provided the forcing terms
are uniformly bounded below one and the difference steps are uniformly sufficiently
small. If the forcing terms and difference steps approach zero, then the convergence is
q-superlinear. If Assumption 2.10 on F̃ also holds, then the convergence is of q-order
1 + p, where p ∈ (0, 1] is the exponent of Hölder continuity in Assumption 2.10.

In section 3, we report on numerical experiments with two illustrative choices of F̃
that are suitable for a broad class of nonlinear diffusion problems. One of these choices,
the “linear” approximation F̃Lin satisfies the assumptions of Theorem 2.12 under mild
conditions and, therefore, has a sound theoretical basis. In our tests, this choice
yielded run times that were always less than those obtained by using exact values
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of F , with greater run-time reductions observed for problems with more expensive
F -evaluations. Additionally, in all test cases, this choice resulted in numbers of linear
and nonlinear iterations that were very close to those obtained by using exact values
of F . Thus this choice promises to be both robust and helpful in improving efficiency
in many nonlinear diffusion problems, especially those in which F -evaluations are
expensive. However, its implementation may be problematic in some applications (see
section 3.2). Our other choice, the “lagged” approximation F̃Lag, does not normally
satisfy the assumptions of Theorem 2.12; however, it is relatively easy and inexpensive
to apply. It improved efficiency in some of our tests, especially in Case 2 (see Table 4);
however, it was inefficient in other tests and suffered failures in Case 3 (see Table 5).
Thus this choice should be kept in mind for ease of application and potential for
improving efficiency but should not be counted on for improvement in all problems.
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