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A FREDHOLM THEORY FOR A CLASS OF FIRST-ORDER
ELLIPTIC PARTIAL DIFFERENTIAL OPERATORS IN Rn

BY

HOMER F. WALKER

Abstract. The objects of interest are linear first-order elliptic partial differential

operators with domain //i(/?" ; C*) in L2(Rn;Ck), the first-order coefficients of

which become constant and the zero-order coefficient of which vanishes outside a

compact set in R". It is shown that operators of this type are "practically" Fredholm

in the following way: Such an operator has a finite index which is invariant under

small perturbations, and its range can be characterized in terms of the range of an

operator with constant coefficients and a finite index-related number of orthogonality

conditions.

0. Introduction. As usual, let L2(Rn; Ck) denote the Hubert space of equiva-

lence classes of C-valued functions on Rn whose absolute values are Lebesgue-

square-integrable over Rn. Let 7/i(Än; Ck) denote the Hubert space consisting of

those elements of L2(Rn; Ck) which have (strong) first partial derivatives in

L2(Rn; Ck). Denote the usual norms on L2(Rn; Ck) and H1(Rn; Ck) by ||  || and

||i, respectively. Consider a linear first-order partial differential operator

" d
A0u(x) = 2 ^i äF "(*)

with domain H^R"; Ck) which has constant coefficients and no zero-order term.

Suppose that A0 is elliptic in the sense that

det I 46 *0

for all nonzero i in Rn. Then, given a positive number R, let E(A0, R) denote the

set of all linear first-order partial differential operators A of the form

Au(x) = y A¡(x) — u(x) + B(x)u(x)
Í = 1 "Xi

with domain H1(Rn ; Ck), the k x k coefficient matrices of which are such that the

following conditions are satisfied :

(i) The coefficients A{{x) and 7i(x) are continuous complex-valued functions

of x on Rn, and the coefficients At(x) have continuous first derivatives.
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(ii) The operator A is elliptic, i.e. det |2?=1 Afa)^ ^0 for all x and all nonzero

| in Rn.

(iii) The coefficients of A are equal to the coefficients of A0 outside the ball

Bl = {xeRn : \x\^R}.

The operators in E(A0, R) are those elliptic operators obtained by adding a

"perturbing" operator to A0 whose coefficients vanish outside the ball B%. The

operator A0 will be referred to as the unperturbed operator of the set E(A0, R).

The operators in E(A0, R) include operators of the type considered in the Lax-

Phillips theory of scattering for evolving systems whose evolution is governed by a

symmetric hyperbolic system of partial differential equations [6]. In particular,

the proper Hubert space in which to construct this scattering theory is the or-

thogonal complement in L2(Rn, Ck) of the null-space of an operator which belongs

to E(A0, R) for some unperturbed elliptic operator A0 and some positive R. This

fact provided the motivation for an earlier paper by the author [7] in which it is

shown that the operators in E(AQ, R) enjoy certain properties of Fredholm opera-

tors, namely, that the dimension of the null-space of an operator in E(A0, R) is

finite and, in a certain sense, depends upper-semi-continuously on the operator.

However, the range of an operator in E(A0, R) is never closed, and so such an

operator cannot be Fredholm according to the usual definition. The objective of

this paper is to show that, nevertheless, an operator in E(A0, R) is "practically"

Fredholm in the following way: Such an operator has a finite index which is

invariant under small perturbations, and its range can be determined in terms of

the range of A0 and a finite index-related number of orthogonality conditions.

1. Preliminary discussion and summary of results. Given a positive R and an

unperturbed elliptic operator A0, let A be an operator in E(A0, R). In the case of

one independent variable, the equation Au = 0 has no nontrivial solution which

is square-integrable in absolute value over R1 ; therefore, as in [7], it will be assumed

that the number of independent variables is at least two. For an operator A in

E(A0, R), there exist positive constants c-¡_ and c2 depending on A such that the

standard elliptic estimate

(1.1) ||w||i á Cilwll+Callyliíll

holds for all u in H1(Rn; Ck) [6]. From this estimate, it follows that H^R1; Ck)

is a natural domain for such an operator in the sense that the operator is closed

on H1(Rn; Ck) and its adjoint operator also has domain H1(Rn; Ck). (For a dis-

cussion of the identity of the weak and strong extensions of first-order operators,

see [2].) In fact, it is easily seen that A* is an unperturbed elliptic operator and that

A* is an operator in E(A*, R). Consider the set

M(A0, R) = {ue Hx(Rn; Ck) : support A0u £ B%)
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and note that M(A0, R) contains the null-space N(A) of every operator A in

E(A0, R). It is shown in [7] that every subset of M(A0, R) which is bounded in

H1(Rn; Ck) is relatively compact in L2{Rn; Ck), and it follows that the dimension

of N(A) is finite for every A in E(A0, R)- Furthermore, for each A in E(A0, R),

there exists a positive constant c for which the estimate

(1.2) HI ^ c\Au\\

holds for every u in M(A0, R) which is orthogonal to N(A). Note that if A and A'

are two operators in E(A0, R), then it follows from the boundedness of the co-

efficients of the operator (A —A') that there exists a positive constant c for which

the estimate

(1.3) \\{A-A')u\\ ̂ cHli

holds for all u in H^R"; Ck). The constant c may be made arbitrarily small by

taking the coefficients oí A' sufficiently near those of A uniformly in Rn. Then the

estimates (1.1) and (1.2) imply that if A' is an operator in E(A0, R) sufficiently

near A in the sense that the constant c is sufficiently small in the estimate (1.3),

then the dimension of N(A') is no greater than the dimension of N(A). It is easily

seen via Fourier transforms that N(Ao)={0}, and so, in particular, if the co-

efficients of an operator A in E(A0) R) differ sufficiently little from those of A0,

then N(A)={0}.

Given an operator A in E(A0, R), consider the set

A(M(A0, R)) = {AueL2(Rn; Ck):ue M(A0, R)}.

For a subset D of Rn, let L2(D; Ck) denote the subspace of L2(Rn; Ck) consisting

of those elements of L2(Rn; Ck) which have support in D. Then not only is

A(M(A0, R)) contained in L2(Bl; Ck), but it is also an immediate consequence of

the estimate (1.2) and the closedness of A that A(M(A0, R)) is a closed subspace

of L2(B% ; Ck). It is shown in the sequel that the orthogonal complement of

A(M(A0, R)) in L2(B%; Ck) is finite dimensional, from which it follows that the

operator A restricted to M(A0, R) is a bounded Fredholm operator from M(A0, R)

to L2(B\; Ck). It is then reasonable to define the index of A to be the index of this

restricted Fredholm operator, for this index is invariant under small perturbations

of A and the range of A can be characterized in terms of the range of A0 and a

finite index-related number of orthogonality conditions. If the number of inde-

pendent variables is at least three, these results are more easily arrived at and more

elegantly stated than in the case of two independent variables. When the number

of independent variables is at least three, the index of an operator A in E(A0, R)

is, remarkably, the dimension of N(A) minus the dimension of N(A*). This is not

the case when there are only two independent variables ; in fact, it is seen that the

index of A0 is (—k). In the case of two independent variables, no attempt is made

to express the index of an operator in E(A0, R) in terms of known quantities;

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



78 H. F. WALKER [March

rather, bounds are established for the index. The case of at least three independent

variables will be dealt with first in §2; the case of two independent variables will

be treated in §3.

2. The case of at least three independent variables. Suppose an unperturbed

elliptic operator

A0u(x) = 2 A or "(*)
i = 1        °X\

and a positive number R are given, and suppose the number n of independent

variables is at least three. Before investigating the properties of operators in

E(A0, R), a few preliminary lemmas are in order. Adopt the following notation:

For an element u of H^R1 ; Ck), put

\axuix)\2 = 2
i = l

For i in Rn, put

AoiO = 2 A&.

Lemma 2.1. Ifn^.3, then

f      K*)l2^ 5r?2l M|2Juisb ¿\n — z)

foralluinH1iRn;Ck).

A proof of Lemma 2.1 may be found in [6].

Lemma 2.2. There exist positive constants cx and c2 for which the estimate

CillMI ̂  Mo"|| èc2 \\8xu\\ holds for all u in H^R"; Ck).

After taking Fourier transforms, the conclusion of Lemma 2.2 follows im-

mediately from the ellipticity of A0 and Parseval's Relation. Details of the proof

are left to the reader.

Lemma 2.3. Ifn^3, then L2iB\; Ck) is contained in the range of A0.

Proof. Let v be an element of L2(Ä£; Ck), and suppose that M^3. The Fourier

transform v of v is bounded, for

\vit)\ ï i»-'a f        \vix)\ dx Ï (2w)-'2{ f        dx\m\\v¡,

and so the function Mr/^)-1^)!2 is dominated by a constant multiple of |£|-2

near the origin in Rn. Since w^3, it follows that — iA0(Ç)-H(Ç) is in L2iRn; Ck).

The inverse Fourier transform u of the function û(i)=—iA0(^)~1v(f) is in

Hx(R; Ck) and satisfies the equation A0u = v, and the lemma is proved.

8    r ^
55 "^ and    ||3xm||2 = 2

8Xi '
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It should be remarked that, since the R appearing in the statement of Lemma

2.3 is an arbitrary positive number, it must be the case that any function in

L2(Rn; Ck) with compact support is in the range of A0. Consider the sets

L(A0, R) = {ue HiiR"; Ck) : support A0u S Rn-Bl)

and

A0(L(A0, R)) m {A0ueL2(Rn; Ck) : ueL(A0, R)}.

It follows from the fact that functions having compact support are dense in

L2(Rn-BB; Ck) and from the above remark that A0(L(A0, R)) is a dense subset of

L2(Rn — Bl ; Ck). Furthermore, one has the following lemma.

Lemma 2.4. //«^3, then every element u of Hx(Rn; Ck) may be uniquely written

as a sum u=ux + u2, where «i is in L(A0, R) and u2 is in M(AQ, R).

Proof. Let u be an arbitrary element of H1(Rn; Ck), and suppose that n ̂  3. Let

XR denote the characteristic function of B%, i.e.

jr„(|jc|) = 1    if |x| < R,

= 0   if |x| > R.

It follows from Lemma 2.3 that XBA0u and, hence, A0u—XBA0u=(l - XB)A0u are

in the range of A0. Noting that Aq1 is a well-defined linear operator from the

range of A0 to H1(Rn;Ck), put u1 = A0~1(l — XB)A0 and u2 = A0~1XBA0u. Since

A0(u—u1 — u2)=0 it must be the case that u=u1 + u2. It is easily seen that this

representation is unique and the proof is complete.

With these lemmas established, the investigation of properties of operators in

E(A0, R) can be begun. Recall from the preliminary remarks that the adjoint

operator A* of an operator A in E(A0, R) is in E(A*, R). The following lemma is

fundamental to subsequent investigations.

Lemma 2.5. Let A be an operator in E(A0, R) and suppose «^3. Then an element

ofL2(B\; Ck) is orthogonal to A(M(A0, R)) if and only if it can be uniquely extended

to an element in L2(Rn; Ck) which is in N(A*).

Proof. The sufficiency is clear. To establish the necessity, let v be an element of

L2(B%; Ck) such that (Au, v)=0 for all u in M(A0, R). It will be shown that there is

a unique element w of L2(R" -Bl; Ck) such that (v + w) is in N(A*), i.e., such that

(Au, d+w)=0 for all u in H^R"; Ck).

For an arbitrary element u of 77i(Än; Ck), one has

\(Au,v)\¿\¡        \Au(x)\2dx\ll2\\v\\

i{cA       \u(x)\2dx + c2\       \dxu(x)\2 dx\ll2\\v\\
I      J\X\£R J\X\£R )
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where cx and c2 are some appropriate constants depending on the norms of the

coefficient matrices of A. Now ¡¡x¡sR \8xuix)\2 dxS ||d*"||2 and, by Lemma 2.1,

f \u(x)\*dX   g   g* |Í,U|«
J\x\£R ¿(n — z.)

Substituting and applying Lemma 2.2 yields the estimate

\iAu,v)\ Ú {c1JR2/2(«-2) + C2}1'2||8xH| ||i;|| Ï c\\A0u\\

for some constant c which does not depend on u. It follows from this estimate that

the function /: A0iLiA0, R)) -> C1 defined by fiA0, u)= —iAu, v) is a bounded

linear functional on the dense subset AQiLiA0, R)) of L2iRn — B%; Ck). Hence, by

the Riesz Representation Theorem, there exists a unique w in L2(Rn-B%; Ck) for

which iA0u, w)= —iAu, v) for all u in L(A0, R).

Now, given an element u of H^R; Ck), write u = ux + u2, where ux is in LiA 0, /?)

and w2 is in MiA0, R). Then

(,4w, t> + w) = (^(t/j + u2), v + w) = (Ault v) + iAult w) + iAu2, v) + iAu2, w).

The first and second terms on the right-hand side cancel, since (Auu v)= — (A0uu w)

and since the coefficients of A are equal to the coefficients of A0 in Rn — BR. The

third term on the right-hand side is zero, since u2 is in MiA0, R) and v is orthogonal

to AiMiA0, R)). The fourth term on the right-hand side is zero, since the support

of Au2 is contained in B% and the support of w is contained in Rn—B%. Conse-

quently, iAu, v + w)=0 for all u in Hx(Rn; Ck); in other words, (v + w) is the unique

extension of v to an element in N(A*). This completes the proof.

The following theorem is an immediate consequence of Lemma 2.5.

Theorem 2.1. Let A be an operator in E(A0, R) and suppose n^3. Then the

restriction of A to the closed subspace M(A0, R) of H^R; Ck) is a bounded Fred-

holm operator from M(AQ, R) to L2(B%; Ck), the index of which is the dimension of

N(A) minus the dimension of N(A*).

In accordance with the above theorem, define the index of an operator A in

E(A0, R) to be the dimension of N(A) minus the dimension of N(A*); in short,

Ind^ = dimAr(^)-dim N(A*) for an operator A in E(A0, R). This definition is

completely analogous to the usual definition of the index of a Fredholm operator.

Indeed, the following theorem verifies that the index of an operator in E(A0, R)

has the usual properties of the index of a Fredholm operator.

Theorem 2.2. Let A be an operator in E(A0, R) and suppose n ¡t 3. Then Ind A

= -Ind A*. Furthermore, if A' is a second operator in E(A0, R) which is sufficiently

near A in the sense that the constant c is sufficiently small in the estimate (1.3), then

(i) dim N(Ä) S dim N(A) and dim N(A'*) ̂  dim N(A*),

(ii) Ind A' = Ind A.
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Proof. Trivially, Ind A= — Ind A*. To establish the remainder of the theorem,

note that if A' is a second operator in E(A0, R), then the constant c in the estimate

(1.3) is a bound on the norm of the restricted operator (A —A') from M(AQ, R)

to L2(B% ; Ck). The statements (i) and (ii) then follow from the basic stability

theorems for Fredholm operators. (For these and other fundamental results

concerning Fredholm operators, see [3] or [4].)

The lemma below is a weak version of Lemma 2.5 which is convenient for the

theorem that follows.

Lemma 2.5'. Let A be an operator in E(A0, R) and suppose « ̂  3. Then an element

ofL2(BB; Ck) is in A(M(A0, R)) if and only if it is orthogonal to N(A*).

Theorem 2.3. Let A be an operator in E(A0, R) and suppose «^3. Then an

element v ofL2(Rn; Ck) is in the range of A if and only if(l—XB)v is in the range of

A0 and{XBv-XBAAöl[(l -XB)v]} is orthogonal to N(A*).

Proof. To show the necessity, let v be an element of L2(Rn; Ck) which is in the

range of A, i.e. suppose there exists an element u of Hx(Rn; Ck) for which Au = v.

Now

A0u = Au + (A0-A)u = XBv + (l-XB)v + (A0-A)u.

Since XRv and (A0 — A)u have support in BR, it follows from Lemma 2.3 that there

exists an element w of H1(Rn; Ck) for which A0w = XBv + (A0-A)u. Then A0(u-w)

= (1 — XB)v, and so (1 — XB)v is in the range of A0. Furthermore,

A(w) = A(u-u + w) = v-AAs^l-X^v]

= XRv-XnAAEl[(l-XB)v] + (l-XR)v-(l-XB)AAô1[(l-XB)V]

= XnV-XnAA^&l-X^v]

and it follows from Lemma 2.5' that {XRv — XBAAöl[(l — XB)v]} is orthogonal to

N(A*).

To show the sufficiency, suppose that v is an element of L2(Rn ; Ck) such that

(l-XB)v is in the range of A0 and {XRv- XrAAö1^ - XR)v]} is orthogonal to

N(A*). By Lemma 2.5', there exists an element u of M(A0, R) such that Au=XRv

-X^Aö^l-X^vlThen

A(u + A^[(l-XR)v]) = X^-XjtAA^l-XM + AA^l-XM

= XBv-XBAA^[(l -XB)v] + XBAA^[(l -XR)v]

+ (l-XB)AAô1[(l-XB)v]

= XRv + (l-XB)v = v.

Thus v is in the range of A, and the theorem is proved.

The above theorem provides the promised characterization of the range of an

operator in E(A0, R) in terms of the range of A0 and a finite number of ortho-

gonality conditions. The following is an interesting corollary: If A is an operator
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in E(A0, R) for which N(A*) = {0} and if «^3, then the range of A is precisely

the range of A0. This completes these investigations for the case of at least three

independent variables.

3. The case of two independent variables. Suppose there are given a positive R

and an unperturbed elliptic operator

2 g

A0u(x) = 2 At ä7 "(*)
I = l       cx(

acting on elements u of HX(R2 ; Ck). Since the number of independent variables is

two, the situation at hand differs considerably from the case treated in the previous

section. For one thing, there is no analogue of the estimate of Lemma 2.1, as may

be seen by considering the following sequence of functions in H^R2 ; Ck) defined

for m=2,3,... :

um(x) = 1 if |x| ^ 1,

-1   f1*1 1
= ;-       -dt   if 1 <  x  ^ m,

\ogmJm   t

= 0 if |x| > m.

For these functions, one has }lx!£l |wm(x)|2 dx=-n while

L|aA(x)|2^=iof^-

For another thing, not all of L2(i?f ; Ck) is contained in the range of A0; hence,

modified forms of Lemma 2.3 and Lemma 2.4 must be presented. Lemma 2.2,

however, remains valid, i.e., there exist positive constants cx and c2 for which the

estimate

Ci|6äh|| í \\A0u\\ í c2\\8xu\\

holds for all u in HJß2; Ck).

The following lemma characterizes those elements of L2(BR; Ck) which lie in the

range of A0.

Lemma 3.1. Let v be an element ofL2(BR; Ck). Then the following are equivalent:

(i) v is in the range of A0.

(ii) The Fourier transform vofv vanishes at the origin.

(iii) v is orthogonal in L2(R2; Ck) to all functions of the form XRc, where c is a

vector in Ck.

Proof. Clearly, (ii) and (iii) are equivalent. To show the equivalence of (i) and

(ii), note that v is in the range of A0 if and only if the Fourier transform v of v is

such that the function — iA0(£) ' H(0 is in L2(R2 ; Ck). Since v has compact support,

v(£) is a continuously differentiable function of £. It follows that — iA0(g) ~ 1í3(í)

is in L2(R2; Ck) if and only if ¿3(0)=0, and the proof is complete.
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The definition of the set L(A0, R) must be altered to serve the present circum-

stances. Redefine

L(A0, R) = {ue Hx(R2; Ck) : A0u is constant in BR}.

The following lemma is the desired modification of Lemma 2.4.

Lemma 3.2. Every element u of H^R2 ; Ck) may be uniquely written as a sum

u = ux + u2 where u^ is in L(A0, R) and u2 is in M(A0, R).

Proof. Let u be an element of H^R2; Ck). Then the function

XR(\x\)A0u(x) - XR(\x\)(2¡R2)[(XBA0u) ~(0)]

is in L2(Bl; Ck), and its Fourier transform vanishes at the origin. By Lemma 3.1,

there exists an element u2 of M(A0, R) such that

^0h2 = XBA0u-XR(2/R2)[(XRA0ur(0)].

The function ui = u—u2 satisfies

AoUl = A0u-XRA0u + XR(2IR2)[(XRA0ur(0)]

= (1 - XB)A0u + XR(2/R2)[(XBA0ur(0)],

and it is immediately seen that u1 is in L(A0, R) and that u = ui + u2 as desired. The

uniqueness of this representation follows from the fact that N(Ao) = {0} and from

the fact that the sets A0(L(A0, R)) and A0(M(A0, R)) are orthogonal in L2(R2; Ck).

This proves the lemma.

To begin the investigation of the properties of operators in E(A0, R), consider

the following lemma.

Lemma 3.3. If A is an operator in E(A0, R) which has no zero-order term, then

the dimension of the orthogonal complement ofA(M(AQ, R)) in L2(BB; Ck) is at least

dimN(A*) and at most dim N(A*) + k.

Proof. First note that the restriction of any element of N(A*) to B\ is orthogonal

in L2(B\; Ck) to A(M(A0, R)). Hence, the dimension of the orthogonal comple-

ment of A(M(A0, R)) in L2(BR; Ck) is at least dim N(A*). Now let arbitrary ele-

ments Vu---, vk+i in the orthogonal complement of A(M(A0, R)) in L2(BR; Ck)

be given. The lemma will be proved if it can be shown that there exist scalars

«i, • • -, at+i, not all zero, such that the linear combination a±Vi+ ■ ■ • +ctk+1vk+1

can be extended to an element of N(A*).

Suppose that v is any element of L2(B\; Ck). Since A has bounded coefficients

and no zero-order term, there exists a positive constant c for which the estimate

\(Au, v)\ g \\Au\\ \\v\\ £c\\dxu\\ holds for all u in H^R2; Ck). It follows from Lemma

2.2 that there is a positive constant C for which the estimate \(Au, v)\ ̂ C||^0w||

holds for all u in H^R2; Ck). This implies, in particular, that the function

/: A0(L(A0, R)) -* C1 defined by f(A0u) = -(Au, v) is a bounded linear functional
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on the linear submanifold A0(L(A0, R)) of L2(R2; Ck). Then it follows from the

Riesz Representation Theorem that there exists a unique w in the L2(R2 ; en-

closure of A0(L(A0, R)) for which (A0u, w)= -(Au, v) for all uinL(A0, R). Note

that w is constant inside the ball BR.

It follows from this discussion that there exist elements h^, ..., wk+1 in the

L2(R2; CO-closure of A0(L(A0, R)) which are constant inside B\ and which

satisfy (A0u, w¡)= —(Au, v¡), i= 1,..., k+ 1, for all u in L(A0, R). Let au ..., ak+1

be some collection of scalars, not all zero, such that the linear combination w0

= a1w1+ • • ■ + ak+1wk+1 vanishes inside the ball BR. Suppose that u is an arbitrary

element of H^R2; Ck). Writing u = ux + u2, where ux and u2 belong to L(A0, R)

and M(A0, R), respectively, one has, as in the proof of Lemma 2.5,

(fc + l \ / fc41 \ / Jc + 1 \

Au, 2 «A + Woj = \Aulf 2 ccivA+(Au1,w0)+\Au2, 2 ccívA + (Au2, w0)

= -(A0uu w0) + (A0u1, w0) + 0 + 0 = 0.

Consequently, the element w0 of L2(R2 — B2,; Ck) extends the linear combination

2?-i aivl to an element of A^*), and the lemma is proved.

To study arbitrary operators in E(A0, R), adopt the following notation: For an

operator

Au(x) = 2 Ai(x)^-u(x) + B(x)u(x)
l = 1 °Xi

in E(A0, R), denote by

2 Q

A,u(x) = 2 At(x) ¿r- u(x)

the operator consisting of the first-order terms of A.

Theorem 3.1. Let A be an operator in E(AQ, R). Then the restriction of A to the

closed subspace M(A0, R) of H^R2; Ck) is a bounded Fredholm operator from

M(A0, R) to L2(B\; Ck), the index of which is at least [dim ^(^r)-dim N(Aj)-k]

and at most min {[dim N(A)-aim N(A*)], [dim JV(^)-dim N(A,*)]}.

Proof. It is an obvious corollary of Lemma 3.3 that the restriction of A, to

M(A0, R) is a bounded Fredholm operator from M(A0, R) to L2(Bf.; Ck) whose

index lies between [dim NiAf) - dim NiAf)-k] and [dim NiAf)-dim NiA*)].

To extend this statement to include the operator A, consider the following observa-

tion : If i?(x) is a continuous kxk matrix-valued function on R2 which vanishes

outside the ball B\, then the operator

B:MiA0,R)^L2iB2R;Ck)

defined by 2?w(x) = j3(x)m(x) is a compact operator. (This follows immediately

from the Rellich Compactness Theorem [1, p. 169] if 2?(x) is a continuously differ-
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entiable function of x. If B(x) is merely continuous in x, then it may be approxi-

mated arbitrarily closely uniformly on Rn by k x k matrix-valued functions which

are differentiable functions of x. This implies that the operator B defined by B(x)

can be approximated arbitrarily closely in norm by compact operators and, hence,

must be compact.) From this observation, it is seen that the restrictions of A and A¡

to M(A0, R) differ by a compact operator. It is then an immediate consequence of

the stability properties of Fredholm operators with respect to compact perturba-

tions that the restriction of A to M(A0, R) is a Fredholm operator from M(A0, R)

to L2(BB; Ck) whose index is equal to the index of the restriction of Afto M(A0, R).

Since, clearly, the index of the restriction of A to M(AQ, R) is no greater than

[dim N(A) — dim N (A*)], it follows that the index of the restriction of A to M(A0, R)

is at least [dim N(Af)-dim N(A*)-k] and at most

min {[dim N(A)-dim N(A*)], [dim N(Af)-dim N(Af)]}.

This completes the proof.

As in the preceding section, one may define the index Ind A of an operator A

in E(A0, R) to be the index of the restriction of A to a bounded Fredholm operator

from M(A0, R) to L2(B\; Ck). Unfortunately, the dependence of Ind A on A in

the present circumstance is much less elegant than in the case of at least three

independent variables. Note, in particular, that it is no longer true that Ind A

= —lndA*. (In fact, it follows from Lemma 3.1 that Ind A0 = lnd A*= —k.)

Consequently, no analogue of Theorem 2.2 will be presented. Let it suffice to say

that, as before, the index of an operator A in E(A0, R) is invariant under small

perturbations of A in E(A0, R). The following theorem is the best possible resur-

rection of Theorem 2.3; it concludes these investigations for the case of two

independent variables.

Theorem 3.2. Let A be an operator in E(A0, R). Then an element v ofL2(R2; Ck)

is in the range of A if and only if there exists a vector c in Ck such that [(1 — XR)v+ XRc]

is in the range of AQ and {XRv — JfB/4/40"1[(l — XR)v + XRc]} is in A(M(A0, R)), a

closed subspace of L2(BB; Ck) whose orthogonal complement in L2(BR; Ck) has

dimension [dim N(A) — Ind A].

Proof. To show the necessity, let v be an element of L2(R2; Ck) which is in the

range of A, i.e. let there exist an element u of HX(R2; Ck) for which Au = v. Now

A0u = Au + (A0 — A)u = (1 — XR)v + XRv + (A0 — A)u.

Since [XBv + (A0 — A)u] has support in B\, it follows from Lemma 3.1 that there

exists a vector c in Ck and an element w of HX(R2; Ck) for which A0w = XBv

+ (A0—A)u—XBc. Then

A0(u-w) = (l-XB)v + XBc,
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and so [(1 — XR)v+ XRc] is in the range of A0. Furthermore,

A(w) = Aiu-u + w) = v-AAö^il-X^v+Xnc]

= XbV-XbAA^KI-XJv+Xic],

and it follows that {XRv- X^A^X- XR)v + XRc]} is in A(M(A0, R)).

To show the sufficiency, suppose that v is an element of L2(/c2 ; Ck) and that c

is a vector in Ck such that [(1- XR)v + XRc] is in the range of A0 and Au=XRv

-XnAAö^il -XR)v + XRc] for some u in M(A0, R). Then

Aiu + A^[i\-XR)v + XRc])

= X^-XzAAo'^il - XB)v+XRc] +XRAA0-W - XR)v + XRc]

+ i\-XR)AA^[i\-XR)v + XRc]

= XRv + il-XR)v = v.

Thus v is in the range of A and the theorem is proved.
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