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Abstract. As an unsolved issue for embedded crypto solutions, side
channel attacks are challenging the security of the Internet of things.
Due to the advancement of chip technology, the nature of side channel
leakage becomes hard to characterize with a fixed leakage model. In this
work, a new non-linear collision attack is proposed in the pursuit of the
side channel distinguishers with minimal assumption of leakage behavior.
The attack relies on a weaker assumption than classical DPA: it does not
require a specific leakage model. The mechanism of collision generation
enables independent recovery of partial keys so that for the first time
the collision attack can be fairly compared with other standard side
channel distinguishers. The efficiency of this attack has been verified by
experiments on an unprotected microcontroller implementation of AES.
Its immunity to modeling errors is confirmed through simulation of a
broad range of leakage functions.

1 Motivation

Side channel attacks (SCA) such as Power and EM analysis remain as a major
concern for embedded cryptographic systems. The mostly wireless connection
of devices and appliances makes security and hence reliable embedded crypto
engines a necessity for the entire Internet of things. Only affordable countermea-
sures and robust evaluation methods can assure a widespread protection against
SCA. In general, SCA achieves its key recovery objective through exploring the
data dependency between side channel observables and the internal state or the
system. Such data dependency has usually been described with a particular leak-
age model by the classical Differential Power Analysis (DPA) [8] and Correlation
Power Analysis (CPA) [4]. Models range from Hamming weight/distance models
to more complicated toggle count models depending on the a-priori knowledge
about the implementation. Consequently, the error from leakage modeling as-
sumption or the lack of detailed a-priori knowledge can aggravate or even pre-
vent successful attacks. Recent studies [13, 9, 6] call for generic distinguishers that
do not rely on a-priori knowledge about the implementation and have minimum
assumption on the leakage distribution. Although non-parametric statistic meth-
ods such as Mutual Information Analysis [7] and Kolmogorov-Smirnov test [20]
are well suited to estimate the unknown leakage behavior, the cost is a huge
loss of efficiency: many more measurements are needed for probability density
estimation or empirical distribution comparison. Whitnall et. al. showed in [21]



that generic univariate attacks with a leakage model exist only for a very limited
selection of target functions. It is indicated that profiled attacks such as tem-
plate attacks [5] and stochastic modeling attacks [14] are necessary for security
evaluation. Although those attacks achieve great efficiency, the requirement of
the profiling stage is sometimes demanding except for evaluating labs.

An alternative side channel strategy are side channel collision attacks [16]
where the adversary recovers the key with the combined benefit from the alge-
braic property and the leakage similarity of internal collisions. Another attractive
feature of collisions is the self-templating property: instead of estimating or as-
suming a leakage model, leakages observed from different queries are directly
compared. In other words, side channel collision attacks do not even require a
leakage model. This satisfies the need of generic side channel distinguishers that
assume as little about the leakage function as possible.

Contribution In this work we propose a new side channel collision attack
to recover secret information without prefixing a leakage model or estimating
leakage distributions. The attack derives side channel collisions between internal
states that do not have a simple linear relationship. The approach allows us to
collide the same partial state at two different stages, e.g. the input and output of
an S-Box, and hence retrieve the secret information by exploiting the bivariate
leakage samples reflecting the two stages. Results are verified experimentally and
through simulation. Of independent importance is the quantitative analysis of
the sensitivity of collision attacks to leakage mismatch in the colliding states.
The proposed attack is efficient, immune to leakage modeling errors and robust
against high inhomogeneity of the leakage behavior of non-linear collisions.

The rest of the paper is organized as follows: After a review of related prior
work in collision attacks in Section 2 we explain in Section 3 how to exploit non-
linear collisions for more efficient key recovery. Section 4 details on experiments
as well as simulations and highlights the applicability and convenience of non-
linear collision attacks.

2 Background

We briefly revisit the existing proposals in side channel collision attacks.

2.1 Collision Attack

Side channel collision attacks were introduced in [16] against DES and extended
in [15] against AES. Works of [1–3, 22] further improved the collision attacks for
different scenarios. They have a common definition of collisions being the same
internal state computed from different inputs. A collision tells the adversary
that targeted key parts satisfy certain algebraic equalities which are employed
to reduce the space of valid key hypotheses. Collision attacks take advantage of
both side channel leakage and the algebraic property of the cipher and hence can
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recover the key with fewer traces. However, such benefit stands on two prereq-
uisites: (1) the adversary should have chosen plaintext capability as mentioned
in [15]; (2) the adversary can detect the occurrence of collision with as low proba-
bility of false positive decision as possible. This is because the algebraic property
can be used only after a collision is successfully detected and it is easy to under-
stand that using a wrongly detected collision yields misuse of invalid algebraic
property and hence risks missing the correct key.

2.2 Linear Correlation Collision Attack

In [11], an interesting algorithm has been proposed to attack AES using corre-
lation enhanced linear collision. It is different from the classical collision attack
since it does not use collision detection to reduce the total number of valid
key hypotheses. In fact, it works more like classical DPA/CPA style attacks
that firstly make hypothesis and then use distinguisher to determine the correct
key that actually generates collisions. But unlike classical DPA/CPA, the lin-
ear correlation collision attack (LCCA) does not recover each subkey directly,
but instead it tests hypothesis of the difference between subkeys as shown in
Figure 1(a). More specifically, if the adversary aims at recovering the difference
∆ = ka ⊕ kb between subkey ka and kb at byte a and b, she needs to test
all possible hypotheses δ of the subkey difference. For each hypothesis δ, the
adversary computes the correlation ρ(MX

a ,M
X⊕δ
b ) between the averaged leak-

age trace MX
a of the byte-a-plaintext Xa = X and the averaged leakage trace

MX⊕δ
b of the byte-b-plaintext Xb = X ⊕ δ. Upon completion of all hypotheses,

the adversary makes the decision of the hypothesis that gives highest correlation,
i.e. δ∗ = argmaxδ{ρ(MX

a ,M
X⊕δ
b )}. The attack works because when testing the

correct hypothesis δ = ∆ = ka ⊕ kb, the Sbox outputs of the two bytes cause
collisions as seen from below.

Xa ⊕Xb = X ⊕X ⊕ δ = ∆ = ka ⊕ kb
⇐⇒ Xa ⊕ ka = Xb ⊕ kb
⇐⇒ S(Xa ⊕ ka) = S(Xb ⊕ kb)

Therefore the averaged leakage traces MX
a and MX⊕∆

b gives high correlation.
If a wrong hypothesis δ 6= ∆ is assumed, the above equalities do not hold any
more, neither have collisions be generated. Therefore a wrong hypothesis results
in low correlation.

3 Non-Linear Collision Attack

Non-linear collisions take advantage of the fact that processing two internal
states of the same value yields similar leakage behavior—especially for software
implementations. The concept of exploitable collisions is extended so that they
occur for different internal states, even if processed under different operations.
We first explain the idea of generating non-linear collisions and then detail how
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Fig. 1. Simplified schematic for Linear Correlation Collision Attack (LCCA) (a) VS
Non-Linear Collision Attack (NLCA) (b). While LCCA exploits linear collision of two
different state bytes at the same stage in the cipher round, NLCA can exploit the
non-linear collision of the same state byte at two different stages of the cipher round.

to exploit them and use them to build a side channel distinguisher called Non-
Linear Collision Attack (NLCA). Its validity, complexity and relation to other
side channel attacks are also discussed.

3.1 Existence of Non-Linear Collisions

Let two internal states of the target implementation be denoted by Y and Z
for the NLCA. The first state Y = fk (X) is the output of a function of the
plaintext X with the secret key k. The keyed function fk is part of the crypto
algorithm that is executed in the target device. For notational convenience, we
use f−1k (Y ) to denote the set of all pre-images of plaintexts that lead to the
internal state Y . The second state Z = φ (Y ) is mapped through an intermediate
non-linear function φ from the predecessor state Y . It is clear that the state Z is
a functional composition output, represented as Z = φ ◦ fk (X). Note that both
of Y and Z should produce observable side channel leakage to be exploitable by
the side channel adversary. We use LY and LZ to denote the observed leakages
for processing the two respective states Y and Z.

The goal of NLCA is to generate collisions between state Y and state Z and
to exploit them by detecting the correlated leakage behavior. That is, for a given
plaintext X, we want to find another X ′ such that the induced internal states
Y, Y ′, Z, Z ′ satisfy the cross-state collision of either Y ′ = Z or Z ′ = Y . Without
loss of generality, we explore the first type Y ′ = Z, i.e.

fk (X ′) = φ ◦ fk (X) (1)

Clearly, if X ′ is chosen as one of the pre-images of φ ◦ fk (X) , then it is a
solution to equation (1). In other words, X ′ ∈ f−1k (φ ◦ fk (X)) implies that the
internal state Y ′ = fk (X ′) is guaranteed to be colliding with the internal state
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Z = φ ◦ fk (X). Hence the observed leakage behavior of LZ and LY ′ can be
expected to be very similar.

3.2 Building a Non-linear Collision Attack

We now show how this idea can be used and converted to a side channel attack on
AES. The described approach can be easily adjusted to target many other block
ciphers. We choose the non-linear operation φ as the first round1 SubBytes. More
precisely, we only consider φ as a single Sbox S (·) in the following context. The
states Y and Z are then the input and output of the same Sbox respectively. The
function fk is the initial key addition (xor) operation. Figure 1(b) visualizes the
idea of NLCA in this setting. The cross state collision in equation (1) becomes
X ′ ⊕ k = S (X ⊕ k) and clearly it has a unique solution

X ′ = k ⊕ S (X ⊕ k) (2)

In other words, if the AES encryption algorithm is executed with plaintexts X
and X ′ computed from equation (2), the produced side channel leakages LY ′

and LZ (with Y ′ = X ′ ⊕ k and Z = S (X ⊕ k)) will be closely correlated. The
adversary, however, does not know the subkey k and therefore cannot directly
plug it into the equation and find such X ′. Nevertheless, all possible subkey
hypotheses can be checked to find the correct subkey k. Algorithm 1 shows
the detailed procedure for the attack on AES. Basically, the adversary makes
a total of 256 subkey hypotheses g ∈ {0, 1}8. For each hypothesis g, she com-
putes X ′g = g ⊕ S (X ⊕ g) for all possible plaintext bytes X. The resulting
list of plaintext pairs X and X ′g is assumed to generate cross-state collisions
Z = Y ′g , under this hypothesis g. The respective average leakage signals LZ , LY ′

g

are stored in vectors α, βg. The Pearson correlation coefficient ρ(α, βg) between
them is finally computed for testing the subkey hypothesis g. After testing all
subkey hypotheses, the adversary picks the subkey hypothesis k∗ that yields
the highest correlation coefficient and determines it as the correct subkey k, i.e.
k∗ = argmaxg {ρ(α, βg)}.

Validity If the hypothesis is correct, i.e. g = k, the computed X ′g = X ′k has the
same format as in equation (2). It follows that

X ′g = g ⊕ S(X ⊕ g) = k ⊕ S(X ⊕ k)

⇐⇒ X ′g ⊕ k = S (X ⊕ k)

⇐⇒ Y ′g = Z

Hence the respective mean signals α, βg of the observed leakage should be similar
and have high correlation. However if the hypothesis is wrong, i.e. g 6= k, then
the above equations do not hold anymore. Hence Y ′g does not collide with Z and
their respective leakage should only give low correlation.

1 It can easily be translated to last round SubBytes with known ciphertexts.
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Algorithm 1 Non-Linear Collision Attack on AES

Input: Number of Traces q, plaintext-byte values X = [X1, ..., Xq] Leakages LY =
[LY,1, ..., LY,q] and LZ = [LZ,1, ..., LZ,q]
Output: Subkey Decision k∗

1: for x = 0 to 255 do
2: Ux = {i | Xi = x, i ∈ [1 : q]} . the set of indices where plaintext is x
3: α[x] = avg{LZ,i | i ∈ Ux} . mean leakage for processing Z
4: γ[x] = avg{LY,i | i ∈ Ux} . mean leakage for processing Y
5: end for
6: for g = 0 to 255 do
7: for x = 0 to 255 do
8: x′g = g ⊕ S(x⊕ g) . x and x′g cause hypothetical collision z = y′g
9: βg[x] = γ[x′g] . get the leakage for processing Y ′g

10: end for
11: R[g] = ρ(α, βg) . Pearson correlation coefficient
12: end for
13: k∗ = argmaxg {R[g]}
14: return k∗

Adaptable with Higher Order Statistical Moments Generic distinguisher
has low assumption on the leakage distribution. In certain scenario, leakage can-
not be captured with the first order statistical moment (empirical mean) but
is able to be detected through higher order moments (e.g. empirical variance,
skewness, etc) as pointed out by [10]. The proposed non-linear collision attack
can easily be extended to capture such hidden leakages. The adjustment is on
line 3 of Algorithm 1. The original vector α is used to precompute the mean
signal (i.e. 1st order moment) of leakage LZ . That is

α[x] = avg{LZ,i | i ∈ Ux} =
1

|Ux|
∑
i∈Ux

LZ,i

with Ux defined in line 2 of the algorithm. The d-th order moment dα of leakage
LZ can also be precomputed for any integer d > 1

dα[x] =
1

|Ux|
∑
i∈Ux

(LZ,i − α[x])d

Similarly dγ can be computed on line 4 to store the d-th order moment of leakage
LY . Finally, one can finish the changes by replacing the first order moment terms
α, βg in line 9 and 11 with d-th order dα,d βg respectively. The adjusted algorithm
can then distinguish subkey hypothesis using higher order statistical moments.
A detailed description of the methods as well as the benefits can be found in [10].

3.3 Comparison with other SCA

In the following we explore possible benefits and drawbacks of NLCA when
compared to other attacks.
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Comparing NLCA with DPA,CPA The big difference between NLCA and
DPA,CPA lies in the fact that NLCA does not rely on a particular leakage
model, e.g. Hamming weight model. DPA and CPA correlate leakage sample to
the leakage model of hypothesis, while NLCA make correlation between leakage
samples. In fact, NLCA only requires the minimal assumption that processing the
same internal state results in similar leakage behavior. If the leakage behavior is
precisely captured by the leakage model assumed in the DPA and CPA, NLCA
might not show advantage. However, if the leakage model deviates from the
physical observables, the two classical methods are more likely to fail while the
NLCA is still robust. More details can be found in Section 4.2.

On the negative side, NLCA requires identifying the bivariate leakage samples
for processing states Y and Z respectively, prior to the attack. With a known
implementation this is not an issue. As Z = S(Y ) is processed after Y with a
fixed offset of clock cycles, finding the two critical time samples is equivalent
to locating the first sample for LY and adding the offset to get the second
sample for LZ . For unknown implementations the location and offsets have to
be guessed. This can be easy, e.g. if it is highly likely that the non-linear function
is implemented as a table-lookup, resulting in an offset of a few clock cycles. But
this might not always be the case.

Comparing NLCA with Collision Attacks The earlier works of side channel
collision attacks [16, 15, 1–3, 22] define collisions as the same value of one target
state from different inputs. The NLCA extends the definition such that collision
occurs on two different targets Y and Z of the same value. The second difference
is that the previous works belong to the chosen plaintext attacks since only
plaintexts in certain pattern can make sure to cause collisions. The NLCA is not
a chosen plaintext attack. It works with traces associated with random plaintext
inputs and hence belongs to the known plaintext attacks. It sorts traces into
different bins Ux and uses all of them. The last but not the least difference is
that previous works rely on successfully detecting the collisions from traces before
making use of their algebraic property to shrink the space of key hypotheses.
The NLCA works in a CPA manner that it tests different subkey hypotheses
and ensures that only the correct hypothesis generates collisions – not just a
few collisions, but all the resulting input pairs x, x′ cause collisions. In other
words, previous works exploit leakage similarity of collisions prior to the use of
its algebraic property, while the order reverses for NLCA. The benefit is to avoid
the false acceptance of collision detection and hence to reduce the risk of misuse
of algebraic property in earlier proposals.

Comparing NLCA with the Linear Correlation Collision Attack. The
NLCA and LCCA have one common feature that they do not require a leakage
model. This is because both are computing the correlation amongst leakage sam-
ples rather than comparing leakage samples to model values. Their complexity
is also at the same level. For LCCA, there are totally 15 independent subkey
differences amongst the 16 bytes in AES. It means that there is a remaining 8
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bit key entropy even after disclosing all subkey differences. Therefore, the total
complexity for recovering a full AES key using LCCA is 15 × 28 recoveries of
subkey relations plus 28 full key verification. While on the other side, the NLCA
recovers all subkeys independently. Its total complexity is 16× 28 in subkey re-
coveries. Yet there are critical differences between the two. Firstly, the LCCA
is categorized by [18] as non-standard side channel attack because it hypothe-
sizes on relation between two subkeys rather than a subkey itself. While NLCA
follows a more straightforward divide-and-conquer approach. Secondly, the col-
lision exploited in the LCCA reveals the homogeneity of leakage behavior under
the same operations. More specifically, both states Za and Zb are the output of
Sbox as seen from Figure 1(a). Hence they are derived from the same routine
in the embedded system. For example, both are loaded from program memory
into the state registers. The collisions generated from the correct hypothesis re-
sults in homogeneous leakage that should have high magnitude of correlation,
which is shown in [11]. The NLCA, however, explores the similarity of leakage
behavior caused by different operations. As can be seen from Figure 1(b) that
Y ′ is the output of key xor and Z is the output of Sbox. It means they are
processed with different instructions. For instance, Y ′ is xored or moved to a
register and Z is loaded from program memory onto a register. Such operational
difference results in leakages of non-linear collisions behaving similarly but not
homogeneously. Therefore, it is not surprising that the level of correlation ob-
tained from NLCA is lower than from LCCA. However, especially in the case of
software implementations, it can be assumed that locating the second colliding
state is easier for NLCA, as both leakages are more likely to occur close to each
other.

Some Limitations The non-reliance of leakage model does not come for free.
One prerequisite of the non-linear collision attack is the existence of the bivariate
leakages: it is satisfied in the situation of software implementation but not in
the hardwares. This restricts the applicability of the NLCA. In addition, it is
not clear whether the NLCA can be extended such that it can also overcome
countermeasures such as masking schemes.

4 Experiments

Three different groups of experiments are described in the following. The first
group is the NLCA attack performed on power measurements of an 8-bit micro-
controller executing AES-128. It also compares the performance of NLCA and
CPA on the real measurements. The second group discusses situations where
NLCA has significant advantage over CPA. The experiments are performed on
simulated leakage traces for well-chosen leakage models. The third group focuses
on the impact of the similar but inhomogeneous leakage behavior caused by
exploiting leakages at different stages of a round.
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4.1 Experiments on Smart Card Power Measurements

We first run the proposed NLCA using real measurements of the power consump-
tion of an 8-bit AVR microcontroller, i.e. the ATXMEGA 256A3B processor. The
microcontroller runs the Rjindael Furious [12]– a popular and efficient software
implementation of AES-128 for AVR. A Tektronix digital sampling oscilloscope
is used to measure power leakage traces. The sampling rate is set to 200M Sam-
ples per second which provides 100 sampling points per clock cycle. The Rjindael
Furious implements the SubBytes operation on each byte as an S-box look up
table (LUT). It firstly takes 1 clock cycle to move the input Y of Sbox into a
particular register for relative addressing the LUT, then uses 3 cycles to load
the output Z of Sbox from program memory into another register. It is therefore
expected that there is an offset of 3 clock cycles (approximately 300 time points)
between processing input state Y and the output state Z of Sbox.

Using Algorithm 1, we test all 256 subkey hypotheses over all time samples.
That is, testing at time sample t refers to assuming LY occurring at sample t and
LZ occurs at sample t+ 300. As can be seen from Figure 2, the correct subkey
hypothesis (red) stands out remarkably from wrong hypotheses (gray) at the time
sample around 6500, which means Y is processed around that time instance and
Z around 6800. More importantly, it is observed that only the correct hypothesis
results in a distinguishable correlation coefficient. This verifies the validity of the
non-linear collision attack. It also indicates that leakages of collisions at different
states under different instructions also behave similarly.

Next, the number of traces needed for a successful NLCA is explored. The
correlation experiment is repeated on the discovered critical time point, as vi-
sualized in Figure 2, using 75 to 1000 traces. The observed trend is depicted in
Figure 3. The correct hypothesis (red/dark) always features a higher correlation
than the wrong ones (gray). The correlation computed from the correct subkey
increases with the number of used traces, and seems not to have reached the limit
with 1000 used traces. The counterparts from the wrong hypotheses, however,
are bounded from -0.2 to 0.2. It is clear that the distinguishability in NLCA
becomes increasingly remarkable with more traces. Note that the performance
of NLCA using fewer traces is not covered in the plot. One might be interested
in the performance of NLCA when, for example, only 20 or traces are available.
However, NLCA requires finding a sequence of pairs (X,X ′) such that the re-
sulted Y ′ and Z collide. With limited availability of leakage traces, it is very
likely that intermediate states cannot be paired with the colliding counterpart.
In other words, too few pairs or even no pairs of LY ′ and LZ can be used for
computing correlation, which is easily biased or even undefined.

Next, the performance of NLCA and correlation based DPA (CPA) are com-
pared on the same measurement setup. The attacks use the same set of 500
leakage measurements. The NLCA is tested on the critical time point discovered
in Figure 2. The CPA assumes the Hamming weight leakage model of the output
Sbox and it is therefore only performed on the most relevant time point for look-
ing up the output state Z of the Sbox. As can be seen from Figure 4(a) and 4(b),
both NLCA and CPA work well in this setting, outputting the correct subkey
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Fig. 2. Pearson correlation coefficient (y-axis) computed from non-linear collision at-
tack over all time samples (x-axis). 1000 traces have been used in the experiments. Gray
curves indicate correlation for the wrong subkey hypotheses; red (dark) represents the
correct hypothesis.
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Fig. 3. Pearson correlation coefficient (y-axis) computed for the non-linear collision
attack over the number of utilized leakage measurements (x-axis). NLCA is performed
only over the most remarkable time sample disclosed in Figure 2. Gray curves represent
wrong subkey hypotheses and the red (dark) curve represents the correct hypothesis.
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43 with the highest correlation coefficient. It is hard to determine which attack
performs better simply from the two plots. The NLCA gives the correlation for
the correct subkey a little higher than the CPA. But the level of correlation for
wrong hypotheses in NLCA (roughly between -0.2 to 0.2) is also higher than the
CPA (roughly between -0.15 to 0.15). Nevertheless, the CPA assumes the Ham-
ming weight leakage model. The experiment only indicates that the behavior of
leakage obtained from the target microcontroller is well captured by the leakage
model in CPA. In general, if the leakage does not behave according to the as-
sumed leakage model, CPA might fail due to the modeling error. This effect is
studied in greater detail in the following simulations.
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Fig. 4. Pearson correlation coefficient (y-axis) for all subkey hypotheses (x-axis) com-
puted from NLCA (a) and from classical CPA (b). The latter assumes Hamming weight
model of the Sbox output. The two attacks use the same set of 500 traces, applied to
the most related time samples disclosed in Figure 2. The correct subkey 43 gives highest
correlation in both scenarios.

4.2 Experiments on Simulations: Immunity to Modeling Errors

In this section, we run experiments to test the robustness of the proposed NLCA
under different simulations of the leakage function. We show situations where the
NLCA has significant advantage over the CPA and Mutual Information Analysis
(MIA).

Adversarial Model. We consider four non-profiling adversaries: the classical
CPA, the univariate MIA (UMIA), the multivariate MIA (MMIA), and our
NLCA. The univariate target of CPA and UMIA is the output of Sbox. While
for the MMIA and NLCA the targets are both the input and the output of
Sbox. The CPA and the two mutual information based distinguishers all assume
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Hamming weight leakage model 2. All probability densities for UMIA and MMIA
are estimated through the histogram method using 9 bins. The NLCA does not
assume any power model.

Leakage Simulation Design. We follow the design proposed in [19] of three
situations of simulation—the optimistic, the realistic and the challenging sce-
nario. The optimistic scenario assumes the leakage behaves proportionally to
the Hamming weight of the state value. I.e.

λop(Z) = HW(Z) + ε

where ε ∼ N (0, σ2) is the additive white Gaussian noise that has variance σ2.
The realistic scenario assumes an unevenly weighted Hamming weight model.
That is, the least significant bit (LSB) of the intermediate data has a relative
weight of 10 while all the other bits have weight of 1. So the leakage function is
expressed as

λre(Z) = HW(Z >> 1) + 10LSB(Z) + ε

The third case, i.e. the challenging scenario, assumes a non-linear leakage func-
tion, and it is instantiated as Sbox mapping composition with the Hamming
weight function. That is when the state Z is processed, the leakage function
evaluated at Z is

λch(Z) = HW(S(Z)) + ε

In other words, processing state Z gives a leakage of the Hamming weight of the
Sbox output of Z. It is clear to see that the modeling bias for CPA, UMIA and
MMIA become increasingly severe in the three simulation scenarios.

Performance Comparison. We use the first order success rate and the guess-
ing entropy [17] to evaluate the subkey recovery performance of the four dis-
tinguishers as shown in Figure 5. All metrics are derived empirically from 1000
independent experiments. In each experiment, the two correlation based distin-
guishers i.e. CPA and NLCA are fed with 256 simulated traces while the two
mutual information based adversaries use 2560 traces because of the demand of
pdf estimation.

It can be seen that only NLCA and MMIA survived from all three simulation
scenarios: both their first order success rate and guessing entropy converge to
1. The CPA and UMIA are efficient when the Hamming weight model captures
the simulated leakage functions very well. However, they become increasingly
impacted by the leakage modeling errors. They succeed in the realistic scenario
at a much higher SNR and remain as failure in the challenging scenario no matter
how SNR varies. Interestingly, in the challenging situation, the guessing entropy
of CPA and UMIA grow much higher than 128 – the quantity for a random
guess without using side channel leakages– even if provided with strong signal.

2 As pointed out in [19], the near generic 7LSB power model for AES does not perform
well for the MIA and it even fails catastrophically in strong signal setting
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Fig. 5. Performance comparison of NLCA, CPA, UMIA and MMIA using First Order
Success Rate (left) and Guessing Entropy (right) under three leakage function assump-
tions: Optimistic (Upper), Realistic (Middle), and Challenging (Lower). Experiments
are simulated at different Signal-To-Noise ratios (x-axis). Leakage modeling error has
negligible impact on NLCA, slight but noticeable impact on MMIA and severe impact
on CPA and UMIA.
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It indicates that the impact of false leakage model can be as catastrophic as
misleading the adversary.

A first glance at the behavior of the two remaining distinguishers MMIA
and NLCA appears to tell that former has some advantage over the latter. But
one should consider that firstly the MMIA requires 10 folds of simulated traces
than the NLCA because of the need of pdf estimation. Secondly, the behavior
of MMIA at optimistic and challenging situations are much more similar, while
at the realistic scenario it actually becomes worse. Such observation shows that
the leakage modeling error still have some impact on its performance, just not
in the same way as one could expected. On the contrary, the NLCA remains
an unchanged pattern in all the three cases. Therefore, NLCA is robust with
respect to different leakage functions and is immune to leakage modeling errors.

4.3 Impact of the Inhomogeneity of Leakages

As mentioned in Section 3.3, processing Y with a move instruction and Z with
a load instruction results similar but not homogeneous leakage behavior even if
the values of the two states collide. Abstractly, it can be viewed as the leakage
functions over the state Y domain and state Z domain are different. The impact
of the inhomogeneity of the bivariate leakage needs to be investigated. The last
group of experiments shows the robustness of non-linear collision attacks against
different levels of inhomogeneity in the leakage. We first define the homogeneity
coefficient τ as the number of bits that both states Y and Z are leaking in the
same manner. It induces the following leakage functions.

λτ (Y ) = λ (YL‖YR) = λ (U) + λ (YR) (3)

The YR represents, for example, the rightmost τ bits of state Y , which are
assumed to be leaking normally (i.e. with the same constant weight). The YL
is respectively the remaining bits of Y that are assumed to be leaking in a
different way. More precisely, in Equation (3), the YL is independent3 of the
leakage function, and it is replaced by an independently generated random 8− τ
bit value U , which then generates leakage. A corresponding leakage function is
defined for state Z such that λτ (Z) = λ (V )+λ (ZR) with a different random V .
It is easy to see that when Y ′ collides with Z in the NLCA, the part Y ′R is the
same as ZR leading to λ (Y ′R) = λ (ZR) while λ (U) 6= λ (V ). In other words, the
collisions are detected only from the common τ bits that are leaking in the same
way. The remaining bits contribute only as noise. The lower the homogeneous
coefficient τ , the more the leakages between the two leaking states will deviate
from one another.

In our experiments the leakage function λ is instantiated with the Hamming
weight function. In the τ homogeneous setting, this means that the leakage
function λτ (Y ) = HW (U) + HW (YR) generates Hamming weight of τ bits YR
as signal, and the remaining random 8 − τ bits U give binomially distributed

3 It can also be considered that YL is mapped non-linearly to U before generating
leakages. This is similar to the challenging scenario discussed in Section 4.2.
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noise. The equivalent is true for Z. A total of 400 independent experiments is
performed. Each experiment uses 256 simulated traces generated from the above
defined leakage functions. The result in Table 1 shows that for homogeneity
coefficient τ ≥ 3, the NLCA gives 100% success rate even for a single subkey
trial. When τ = 1, 2 which are the fairly low level of homogeneity, the adversary
can still achieve success rates more than 40% and more than 95% respectively by
making 4 trials. The last line of the table uses the security description Guessing
Entropy defined in [17] that quantifies the expected number of subkey guesses
until finding the correct subkey. It is not surprising to see that 2 trials can
guarantee the adversary finding the correct subkey when τ ≥ 2. Even at the
lowest homogeneity level, it can still be achieved with 20 trials. To sum up, the
NLCA shows very strong robustness against inhomogeneity of leakages for the
two states. This result is not restricted to NLCA and apply in the same way to
inhomogeneity of leakages in LCCA.

Table 1. The robustness of NLCA against various levels of homogeneity of leakage
behavior for the two sensitive states.

Homo. Coef.
τ = 0

Homo. Coef.
τ = 1

Homo. Coef.
τ = 2

Homo. Coef.
τ = 3 to 8

1st order Success Rate 0.3% 23.0% 89.3% 100.0%

4th order Success Rate 1.5% 43.0% 97.8% 100.0%

Guessing Entropy 126.13 19.18 1.35 1.00

5 Conclusion

This work proposes the non-linear collision attack as another variety of collision-
based side channel attacks. The attack exploits leakages of collisions of different
states and does not rely on accurate leakage modeling. Experimental results show
that the leakage behavior for different states are similar enough to be exploited
by NLCA especially in the software implementation situations. It also shows that
inhomogeneous leakages generated by different operations have only low impact
on the performance of the proposed attack.
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