
On the Vulnerability of Low Entropy

Masking Schemes

Xin Ye and Thomas Eisenbarth

Worcester Polytechnic Institute, Worcester, MA, USA
{xye,teisenbarth}@wpi.edu

Abstract. Low Entropy Masking Schemes (LEMS) have been proposed
to offer a reasonable tradeoff between the good protection against side-
channel attacks offered by masking countermeasures and the high over-
head that results from their implementation. Besides the limited analysis
done in the original proposals of LEMS, their specific leakage characteris-
tics have not yet been analyzed. This work explores the leakage behavior
of these countermeasures and shows two different methods how the leak-
age can be exploited, even by generic univariate attacks. In particular,
an attack that exploits specific properties of RSM for AES as well as a
more generic attack making very little assumptions about the underly-
ing LEMS are introduced. All attacks are practically verified by applying
them to publicly available leakage samples of the RSM countermeasure.

1 Motivation

Side channel attacks such as Power and EM analysis are still a major concern for
embedded cryptographic solutions, in particular for cryptographic smart cards.
One of the earliest and most studied countermeasure techniques is masking [4, 7,
20]. Masking, if done correctly, significantly increases the complexity of a success-
ful attack. Results go as far as proving the impossibility of first-order attacks for
appropriately masked implementations and leakages covered in the correspond-
ing assumptions. This means that the simplest and probably most popular at-
tacks such as classical DPA [8], CPA [3] and MIA [6] become impractical or in
many cases even infeasible.

One major drawback of masking schemes is the significant overhead needed
for their realization, especially for popular ciphers such as the AES. Compu-
tational overheads are usually significant and are due to mask processing and
other adjusted computation such as just-in-time recomputation of look-up tables,
or their redundant storage. In addition, masking schemes usually assume uni-
formly distributed random masks, i.e. a sufficiently good randomness generator
has to be implemented and queried in addition to the protected cryptographic
scheme. Hence, masking usually adds significant time and space overhead to
cryptographic implementations in both hardware and software. Motivated by
this overhead is the idea of reducing the entropy of the mask. Using fewer mask
values can reduce the number of special cases that have to be handled by the
implementation, allowing for a possible tradeoff between side channel resistance

and performance. While one could argue that this is a common approach in
protecting logic styles [15], only limited work has been proposed to apply low-
entropy masking at the architecture level [12, 13, 2]. These works claim that
first-order attacks are still prevented. However, while analysis of masking logic
styles suggests remaining leakage [17], no deeper analysis of possible weaknesses
has been performed. This work takes a first systematic step in that direction.

Contribution In this paper we formalize low entropy masking schemes and re-
veal the vulnerability of their limited protection. We propose two leakage com-
position based attacks to show how to exploit the weakened leakage even by
univariate adversaries. Experiments are performed on a software implementa-
tion of Rotating Sboxes Masking (RSM) to verify the validity of the proposed
attacks.

The rest of the paper is organized as follows: Section 2 reviews the low entropy
masking schemes and gives the adversarial model for these schemes; Section 3
introduces the leakage distribution decomposition attack (LDDA); Section 4
proposes the leaking set collision attack (LSCA); experiments are carried out in
Section 5 to verify LDDA and LSCA using measurements from DPA contest V4;
and finally conclusions are made in Section 6.

2 Background

In the following we give a detailed definition of low-entropy masking schemes
and the assumed adversarial model and show why low-entropy masking schemes
can thwart standard attacks like DPA and CPA.

2.1 Low Entropy Masking Schemes

Low entropy masking schemes (LEMS) are a countermeasure against side chan-
nel attacks (SCA). Like other masking schemes, they try to randomize the ob-
served leakage by applying random values to intermediate states. However, the
size of the mask alphabet is reduced, resulting in a limited extend of random-
ization of leaking states. For example, for a LEMS protected implementation
of AES, the mask set M is a strict subset of {0, 1}8 such that the number of
applicable mask values is much smaller than 256. The Rotating SBoxes Masking
(RSM) scheme proposed in [13] is a realization of LEMS. It is a Boolean masking
scheme that uses 16 mask values uniformly at random to protect AES internal
states. In general, we denote the set of masks M = {m1,m2, ...,ms} ⊂ F

n
2 . We

say a LEMS has masking entropy of log s if mask values are chosen uniformly at
random from this set. The RSM is therefore said to have 4 bits of mask entropy.
Furthermore, authors in [12] proposed a selection criterion of optimal mask val-
ues for LEMS. According to this guideline the following 16 byte values (written
in hex format) are used as the mask set in the DPA contest V4.

M = {00,0F,36,39,53,5C,65,6A,95,9A,A3,AC,C6,C9,F0,FF}

2

The 16 chosen values form an [8, 4, 4] linear code. It is therefore not surprising
that they satisfies the self-complementary property: M = M. Namely, m ∈ M
if and only if m̄ ∈ M, where m̄ is the bitwise inversion of m.

The benefit of applying LEMS lies in the fact that it saves lots of computa-
tion when compared to a full entropy masking scheme (FEMS) where s = 2n.
The latter usually suffers from the huge amount of additional computation as a
consequence of repeated masking/de-masking for the non-linear operation of a
block cipher (e.g. Sbox in AES). One example is the Generalized Look-Up Table
countermeasure proposed in [16]. It increases the size of a single Sbox sufficiently
to make parallelized implementation of AES on FPGAs infeasible. However, with
fewer masks, the total number of necessary extra-computations can be kept at an
acceptable level or even completed from pre-computations (e.g. defining masked
sbox as look up tables). In short, LEMS enables more efficient implementation
of a masking countermeasure. Unavoidably, applying LEMS causes some loss of
protection when compared to FEMS. The natural question is how much security
has been sacrificed and whether an attacker can construct an efficient attack to
break the LEMS. Experiments in [13] show that RSM can resist univariate at-
tacks including first and second-order DPA and CPA. The work uses MIA as the
metric to get a quantification of 0.015 bit of information leakage in the described
experimental setup, motivating a claim that such a low amount should be hard
to exploit.

2.2 Adversarial model

We assume an adversarial model with the following notations. Let X be the
partial input/output (i.e. knowntext) of the algorithm known to the adversary
(e.g. one byte of plaintext of encryption), k be the partial key in use, Y = fk (X)
be the sensitive algorithmic state value to be protected. Here f is the target
function which is usually a part of the algorithm. Let M = {m1, ...,ms} be
the set of masks. When M ∈ M is applied in a first-order masking scheme
MASK(·, ·), YM = MASK(Y,M) is generated internally to protect the sensitive
Y . The masked output YM is also called the leaking value (or masked state).
The observed univariate leakage Λ is considered as the functional evaluation of
the leaking value YM in the leakage function L(·) as expressed in equation (1).

Λ = L(YM) = L(MASK(fk (X) ,M)) (1)

The set of all leaking values for Y is denoted as YM = {Ym1
, ..., Yms

}. A sensitive
internal state y is protected by leaking values ymi

with equal probability because
the mask is chosen uniformly at random from M.

In sum, the knowledge of the adversary includes the input X, target function
f , and the univariate leakage Λ for processing leaking values YM . Our first attack
in Section 3 also assumes the adversary to know the mask set M, while in our
second attack in Section 4 we only assume the mask set to satisfy the self-
complementary property; the attacker does not necessarily need to know the
mask values.

3

3 Leakage Distribution Decomposition Attack

LEMS are designed to resist low statistical order DPA/CPA attacks while main-
taining small computational overhead. The low level of leakage indicated by the
mutual information I(HW (YM);Y), as quantified in [13, 12], however, does not
exclude the possibility of a univariate attack. In this section we analyze the com-
position of the leakage distribution under the protection of LEMS. We propose
a univariate attack that can correctly decompose the observed one-dimensional
distribution of leakage into several sub-distributions.

3.1 Leakage Distribution Composition

With the masking countermeasure, one algorithmic internal state Y can pro-
duce side channel leakage Λ through multiple leaking values Ym1

, ..., Yms
. Con-

sequently, the conditional entropy of leakage H(Λ | Y) increases, making the
classical attacks harder to succeed. According to equation (1) the leakage Λ de-
pends on the knowntext X and the mask M , which are the main sources of
entropy. If the knowntext is fixed to one value X = x at a time, the leakage en-
tropy is lowered because only mask values are changed and LEMS only contains
a small number of masks.

We use DX=x
M∈M

[Λ] (or simply Dx
M
[Λ]) to denote the leakage distribution un-

der the condition that the knowntext X is fixed to x and the mask M is chosen
uniformly at random from the mask set M. In this situation, X = x implies
only one sensitive value y = fk(x) is to be protected by the masks, which re-
sults in the leaking set (y)M. Processing each leaking value ymi

produces leakage
L(ymi

). The respective leakage observations form a leakage sub-distribution de-
noted by DX=x

M=mi
[Λ] (or simply Dx

mi
[Λ]) 1. Since the leaking set (y)M contains

s leaking values, the observed leakage distribution Dx
M
[Λ] is a composition of s

sub-distributions, namely,

Dx
M[Λ] =

1

s

s
∑

i=1

Dx
mi

[Λ] =
1

s

s
∑

i=1

D[L(ymi
)] (2)

This equality actually comes from the law of total probability, i.e.

p[Λ = λ | X = x] =

s
∑

i=1

p[Λ = λ | M = mi, X = x] · Pr[M = mi]

=
1

s

s
∑

i=1

p[Λ = λ | M = mi]

simply because Dx
M
[Λ] has the same meaning as the pmf/pdf p[Λ = λ | X = x]

and Dx
mi

[Λ] the same as p[Λ = λ | M = mi, X = x].

1 The notation DX=x
M=mi

[Λ] is of the same meaning of leakage distribution as D[L(ymi
)].

Both describe the leakage for processing ymi
. The former emphasizes leakage decom-

position and the latter focuses on connecting with estimated sub-distributions.

4

It is important to see that in LEMS the distribution Dx
M
[Λ] with fixed input

x is different from the overall leakage distribution D[Λ] where the knowntext is
not fixed. The former is a mixture of only s sub-distributions, while the latter is
composed of all 2n sub-distributions caused by all 2n leaking values. In fact, the
proposed leakage distribution decomposition attack (LDDA) makes use of this
difference to explore the weakness of LEMS. It also indicates that the univariate
LDDA cannot be extended to attack FEMS where both Dx

M
[Λ] and D[Λ] are

composed of 2n sub-distributions and hence not distinguishable from each other.

3.2 Procedure of Leakage Distribution Decomposition Attack

Prior to the attack, the adversary needs to estimate the sub-distributions D[L(v)]
of leakage for each leaking value v. We discuss this issue in more detail in Sec-
tion 3.3 and 3.4. Here the attacker is assumed to have already obtained a precise
estimation of sub-distributions. We show how this idea of decomposition in leak-
age distribution converts to a side channel attack. For each subkey hypothesis g
and each prefixed knowntext X = x, the adversary follows a three-step proce-
dure.

1. Find the hypothetical leaking set (ŷ)M;
2. Compute the hypothetical mixture D̂x

M
[Λ̂];

3. Evaluate the distance Dist(D̂x
M
[Λ̂]‖Dx

M
[Λ]) between the mixture and the

observed distribution.

More specifically, with the subkey hypothesis g for a subkey k, the adversary
computes ŷ = fg(x) and its respective masked states ŷmi

= MASK(ŷ,mi) for all
mi ∈ M. Since each hypothetical leaking value ymi

contributes as one component
D̂[L(ŷmi

)] of the leakage distribution, the adversary rebuilds the hypothetical
mixture of all the s sub-distributions as

D̂x
M[Λ̂] =

1

s

s
∑

i=1

D̂[L(ŷmi
)] (3)

Next, the adversary measures the similarity of the hypothetical mixture D̂x
M
[Λ̂]

and the observed distribution Dx
M
[Λ]. A distance metric Dist(D̂x

M
[Λ̂]‖Dx

M
[Λ])

is evaluated for this purpose. In general, a small value of the computed distance
metric indicates the two distributions are close to each other. A typical instantia-
tion of the distance metric is the Kolmogorov-Smirnov distance suggested by [22,
23], which is later used in our experiments.

The adversary repeats the three-step procedure for all subkey hypotheses
and all prefixed x. Her final decision for the correct subkey k is the hypothesis
k∗ that results in the lowest averaged distance as in equation (4). The attack is
successful if k∗ = k.

k∗ = argmin
g

{

1

|X |

∑

x∈X

Dist(D̂x
M[Λ̂]‖Dx

M[Λ])

}

(4)

5

Please note that the LDDA does not predict each individual leaking state.
Instead, it analyzes the entire predicted leaking set. Figures 1(a) and 1(b) give
an intuitive idea of how the decomposition of the observed distribution works
for correct and incorrect subkey guesses.

30 35 40 45 50 55 60 65 70
0

5

10

15

20

Leakage

F
re

qu
en

cy

(a)

30 35 40 45 50 55 60 65 70
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Leakage

P
ro

ba
bi

lit
y

D
en

si
ty

rebuild from wrong guess
rebuild from correct guess

(b)

Fig. 1. The observed leakage distribution (a) VS the hypothetical mixtures (b). The
rebuilt mixture from the correct guess has a similar shape to the observed distribution
while the mixture from the wrong guess is quite different from the observed distribution.

Validity If the subkey guess g is correct, i.e. g = k, then ŷ = fg(x) = fk(x) = y
and the prediction of leaking set is correct (ŷ)M = (y)M. Given precise estima-
tions of sub-distributions, the rebuilt mixture D̂x

M
[Λ̂] from equation (3) will be

close to the observed distribution Dx
M
[Λ] because

D̂x
M[Λ̂] =

1

s

s
∑

i=1

D̂[L(ŷmi
)] =

1

s

s
∑

i=1

D[L(ymi
)] = Dx

M[Λ]

However if the hypothesis is wrong, i.e. g 6= k, then ŷ = fg (x) 6= fk (x) = y
for most of the inputs x, hence the hypothetical leaking set (ŷ)M has a low
probability2 to be the same as the actual leaking set (y)M. It follows that with
high probability the rebuilt mixture D̂x

M
[Λ̂] differs significantly from the observed

Dx
M
[Λ] and hence their distance metric output should be large.

3.3 LDDA With Profiling

We have mentioned that the adversary should estimate the sub-distributions be-
fore mounting the LDDA attack. This has a straightforward solution by combin-
ing a profiling phase. More specifically, the profiling adversary is also assumed

2 An exception is when (ŷ)M is a permutation of (y)M for some particular g and x.
Such exception occurs with small probability because the predicted leaking states
take the range of entire {0, 1}n rather than M

6

to have full control of the masks during the profiling stage – she knows each
mask that is applied in each invocation. This assumption is frequently used in
previous work [14, 9, 18]. The described attacks require at least bi-variate leak-
ages consisting of the sample for processing the mask and the sample for the
masked state. Hence, these approaches are not applicable for univariate attacks.
Nevertheless, the profiling capability allows the adversary to build univariate
leakage templates for each leaking value v = MASK(fk′(x),m) on another de-
vice that runs the same crypto algorithm with a different but known key k′.
In other words, although the low entropy masking protection mingles different
sub-distributions D[L(v)] together to achieve confusion, the assumed profiling
adversary can still isolate each from the mixture. The isolated D[L(v)] can then
serve as a sub-distribution look up table, enabling the adversary to rebuild the
hypothetical mixture (the second step of LDDA) easily.

3.4 LDDA Without Profiling

Allowing the adversary having profiling capability is sometimes demanding. We
show that sub-distribution estimation is also feasible for adversaries who are not
granted with such privilege. This is achieved by assuming a leakage model and
estimating the expression of leakage function explicitly. For a clear illustration,
we assume the commonly accepted Hamming weight leakage model for a LEMS
protected AES. It should be mentioned that advanced techniques of non-profiling
leakage modeling such as linear regression model [5] may play a similar role if
adjusted properly. With the Hamming weight model, the leakage Λ is expressed
as a linear function of the Hamming weight of the leaking states with additive
white Gaussian noise ǫ. I.e.

Λ = aHW (YM) + b+ ǫ

where the coefficients a, b are unknown constants, and the noise ǫ ∼ N
(

0, σ2
)

is mean zero and the noise level σ is also unknown. Since the sub-distributions
D[L(v)] for processing leaking value v can now be represented asN (Λ; aHW (v)+
b, σ2), estimating sub-distributions is simplified to estimating the unknown pa-
rameters a, b, σ. Meanwhile, it is easy to see that the overall leakage distribution
D[Λ] is a weighted composition of nine Gaussian curves. I.e.

D[Λ] ≈
8

∑

h=0

whN (Λ; ah+ b, σ2) (5)

where 0 ≤ wh ≤ 1 is the proportion of the normal curve N (Λ; ah + b, σ2) and
∑8

h=0 wh = 1. It follows that the Hamming weight h of leaking values YM forms
a Binomial distribution and the weight parameters wh =

(

8
h

)

/28, provided that
the knowntext X is uniformly distributed. It is because xoring and SBoxing
are one-to-one mappings. They deliver the uniform distribution from X to the
sensitive Y and its masked output YM .

7

Finally, we solve the parameter estimation as an optimization problem. Op-
timal choices of a, b, σ should minimize the difference between the two sides of
equation (5), namely, the observed overall leakage distribution and the compo-
sition of the parameterized sub-distributions. We set it as the objective function
in equation (6). Furthermore, the optimization should be associated with the
restriction that the statistical characteristics of the two sides should be approx-
imately equal as in (7). Examples of the restriction functions are the statistical
moments including Mean(D[Λ]) ≈ 4a + b, Var(D[Λ]) ≈ σ2 + 2a2 (derived from
analysis of variance) and etc. The optimally parameterizedN (Λ; aHW (v)+b, σ2)
can then serve as a sub-distribution look up table, enabling the adversary to carry
out the LDDA.

Minimize Dist(D[Λ]‖
8

∑

h=0

whN (Λ; ah+ b, σ2)) (6)

StatChar(D[Λ]) ≈ StatChar(
8

∑

h=0

whN (Λ; ah+ b, σ2)) (7)

It should be mentioned that the non-profiling LDDA is heavily influenced
by the accuracy of leakage modeling. Large bias results in the derived sub-
distributions being significantly different from the actual leakage function and
hence reduces the efficiency or even disables the LDDA.

4 Leaking Set Collision Attack

The previously discussed LDDA follows a ’decompose’-then-’rebuild’ approach
to compare the distributions of leakage. We now propose a second attack named
leaking set collision attack (LSCA). It circumvents the ’rebuild’ step and allows
adversary directly comparing related distributions and therefore gains the benefit
of avoiding the sub-distribution estimation.

4.1 Existence of Leaking Set Collisions

The approach extends side channel collision attacks [19, 11] by defining collisions
between two leaking sets. Two distinct knowntexts x 6= x′ are said to induce a
leaking set collision if the respective leaking sets are the same, i.e.

(y)M = {ym1
, ..., yms

} = {y′m1
, ..., y′ms

} = (y′)M

For Boolean masking schemes, the existence of leaking set collisions is a con-
sequence of the self-complementary property for the choice of the mask values
suggested in [12, 13]. It indicates that if m is chosen as a possible mask value, so
should its bitwise inverse m̄ = m ⊕ 1n as explained in Section 2.1 (1n denotes
the all-1 bit string, e.g. 0xff for a byte). One simple choice is y′ = ȳ. Because
for any m ∈ M,

(ȳ)m = ȳ ⊕m = y ⊕ 1n ⊕m

= y ⊕ m̄ = ym̄ ∈ (y)M

8

This proves (ȳ)
M

⊂ (y)M. Similarly the other direction (ȳ)
M

⊃ (y)M also holds
and hence (y)M = (ȳ)M. On the other hand, this choice y′ = ȳ identifies a
relation between the respective knowntexts x, x′ by setting fk (x

′) = fk (x). It is
equivalent to

x′ = f−1
k (1n ⊕ fk (x)) (8)

It implies that the knowntext pair 〈x, x′〉 derived from equation (8) results in a
leaking set collision between (y)M and (y′)M.

4.2 Building a Leaking Set Collision Attack

An importance consequence of the leaking set collision is that the respective
underlying leakage distributions are identical. In fact, the set collision (y)M =
(y′)M implies the both Dx

M
[Λ] and Dx′

M
[Λ] have the same composition of sub-

distributions.

Dx
M[Λ] =

1

s

s
∑

i=1

D[L (ymi
)] =

1

s

s
∑

i=1

D[L
(

y′mi

)

] = Dx′

M[Λ]

Therefore, the empirically observed leakage distributions Dx
M
[Λ] and Dx′

M
[Λ]

should be very close to each other. We now show how to convert this into a
side channel attack against LEMS protected AES. The Sbox of the first round
is chosen as the target function. Hence, the sensitive states y, y′ are the s-box
outputs and the knowntexts x, x′ are the corresponding plaintext byte values3.
The paired relation in equation (8) is then instantiated as in the following pairing
equality in (9).

x′ = Pairing(x, k) = k ⊕ S−1 (0xff⊕ S (x⊕ k)) (9)

It indicates that the plaintext pair 〈x, x′〉 which satisfies the paring equality
forms a leaking set collision at their respective masked outputs.

The adversary, however, does not know the subkey k and cannot directly
plug in the pairing equality to derive a collision. Nevertheless, she can make
subkey hypothesis g and check for collisions just like a standard side channel
attacker. A detailed attacking procedures is shown in Algorithm 1. It firstly
sorts all leakages according to their respective plaintext x so that the empirical
distributions Dx

M
[Λ] are obtained for all possible x. The adversary then starts

testing subkey hypotheses. With each hypothesis g, she computes the hypothet-
ical pairing x′ = Pairing(x, g) defined in equation (9). The two sets of related
leakage distributions Dx

M
[Λ] and Dx′

M
[Λ] are fetched and their similarity is mea-

sured using the distance metric Dist(). In practice, the adversary can add up
the computed distances derived from all possible collisions (line 8 of the algo-
rithm). The decision strategy is similar to LDDA: the adversary determines as

3 The same approach can be applied to arbitrary intermediate states, as long as they
are a non-linear function of x and k: For states y that are linear functions of x

and k, e.g. the s-box input, the key cancels out so that the knowntext pair become
independent from the key, making the conversion into an attack infeasible.

9

the correct subkey the hypothesis k∗ that results in the smallest overall distance.
The attack is successful if k∗ = k.

Algorithm 1 Leaking Set Collision Attack on RSM-AES

Input: Number of traces q; Knowntexts x1, ..., xq; leakages λ1, ..., λq

Output: Subkey Decision k∗

Precomputation:
1: for x = 0 to 255 do

2: Dx
M[Λ] = {λi | xi = x} ⊲ collect leakage whose knowntext is x

3: end for

Key recovery:
4: for g = 0 to 255 do

5: δg = 0
6: for x = 0 to 255 do

7: x′ = Pairing(x, g) ⊲ compute hypothetical pairing x′

8: δg = δg + Dist(Dx
M[Λ]‖Dx′

M[Λ]) ⊲ sums the distances from all pairings
9: end for

10: end for

11: k∗ = argming{δg}
12: return k∗

Validity If the key hypothesis is correct, i.e. g = k, then the derived pairing
x′ = Pairing(x, g) = Pairing(x, k) is exactly the same as the true pairing
equality in equation (9). It follows that a leaking set collision (y)M = (y′)M is
generated. Hence the compared distributions should feature a low distance metric
quantity Dist(Dx

M
[Λ]‖Dx′

M
[Λ]). However if the subkey hypothesis is wrong, the

computation yields

y′ = S(x′ ⊕ k) = S(g ⊕ S−1(0xff⊕ S(x⊕ g))⊕ k)

It is different from ȳ = 0xff⊕S(x⊕k) for most x. Hence the resulting leaking set
(y)M has low probability to completely overlap (y′)M and the two distributions
have high probability to differ significantly.

Complexity It should be mentioned that the roles of x and x′ of a hypothetical
pairing are symmetric for any hypothesis. That is, if x′ is a hypothetical pairing of
x satisfying x′ = Pairing(x, g), then reversely x is also a pairing of x′ satisfying
x = Pairing(x′, g). Here is a simple proof.

x′′ = Pairing(x′, g) = g ⊕ S−1(0xff⊕ S(x′ ⊕ g))

= g ⊕ S−1(0xff⊕ S(S−1(0xff⊕ S(x⊕ g))))

= g ⊕ (x⊕ g) = x

10

This symmetry implies there are a total of 128 possible leaking set collisions
for all 256 knowntexts x. It suffices to make only 128 distance comparisons for
testing one hypothesis. Therefore the total complexity is 256 × 128 distance
computations to recover one key byte.

Comparing LSCA with LDDA One common feature of LDDA and LSCA
is that both attacks are achieved by comparing leakage distributions. More pre-
cisely, the compared leakage distributions refer to the leakages Dx

M
[Λ] with some

prefixed knowntext x. It results in a lowered leakage entropy which become ex-
ploitable by the two attacks.

There are also many differences between the two attacks. Firstly, the LDDA
compares empirically observed leakage distribution with the rebuilt hypotheti-
cal mixtures, while the LSCA compares two sets of distributions that are both
obtained empirically. Therefore, the correct subkey hypothesis in the LDDA
measures the closeness of the empirical distribution to its underlying distribu-
tion. In the LSCA it measures the closeness between two empirical distributions
that are sampled from the same underlying distribution. Secondly, the LDDA
requires sub-distribution estimations to complete the “rebuild” step, while the
LSCA avoid this. We have seen that estimating sub-distributions not only adds
some complexity or even requires profiling privilege, but is also influenced by the
accuracy of leakage modeling. Thus the LSCA does not suffer from the modeling
bias. Last but not the least, the LDDA requires the mask set M to be known
but the LSCA only requires the self-complementary property for the masking
set M. To sum up, the LDDA shows the explicit composition of leakages and
the LSCA makes use of leakage composition implicitly and is more efficient in
practice.

5 Experiments

In this section, we carry out the LDDA and LSCA described in Section 3 and
Section 4. Our experiments are performed on the measurements from DPA con-
test V4 [1]. It is a software implementation of AES-256 protected by the RSM
countermeasure (cf. Section 2.1) and a total of 100,000 leakage measurements are
provided. All attacks are performed on a univariate leakage sample representing
the leakage of the first round AES output of SBox. Before showing our result we
want to mention as reference that [13] shows 0 success rate for DPA,CPA and
VPA based on 150,000 observations of a hardware implementation of RSM. It
also reports 0.001 to 0.012 bit of information being leaked from mutual informa-
tion analysis.

5.1 LDDA With Profiling

We firstly implemented LDDA using the template attack approach and we as-
sume full knowledge of the mask application during the profiling stage as detailed
in Section 3.3. A total of 50,000 measurements are used to build the templates,

11

i.e. the 256 sub-distributions D[L(v)] of leakages for processing each possible
leaking state v. The obtained sub-distributions are represented as 256 Gaus-
sian curves N (Λ;µv, σ

2
v). Upon the completion of sub-distribution estimation,

another 2,000 to 16,000 measurements are used to test all 256 subkey hypothe-
ses using the 3-step LDDA. In particular, the rebuilt distribution from each
hypothesis is now instantiated as a Gaussian mixture,

D̂x
M[Λ̂] =

1

s

∑

v∈(ŷ)M

N (Λ̂;µv, σ
2
v)

resulting in a model similar to [10]. The Gaussian mixture is compared with the
observed distribution Dx

M
[Λ] using Kolmogorov-Smirnov (KS) distance metric.

0 50 100 150 200 250
0.27

0.272

0.274

0.276

0.278

0.28

X: 108
Y: 0.2726

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250

0.196

0.198

0.2

0.202

0.204

0.206

X: 108
Y: 0.196

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250

0.134

0.136

0.138

0.14

0.142

0.144

0.146

0.148

0.15

0.152

0.154

X: 108
Y: 0.1386

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.096

0.098

0.1

0.102

0.104

0.106

0.108

0.11

0.112

0.114

0.116

X: 108
Y: 0.09722

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Fig. 2. Profiling LDDA hypothesis testing: Kolmogrov-Smirnov distance (y-axis) be-
tween observed leakage distribution and rebuilt Gaussian mixture from all subkey hy-
potheses (x-axis) with the profiled sub-distributions. Experiments use 2,000 traces (a);
4,000 traces (b); 8,000 traces (c); and 16,000 traces (d).

Figure 2 shows the profiling LDDA hypothesis testing for the first subkey
byte. We can see that LDDA succeed – the correct subkey k = 108 always

12

gives the smallest KS distance among the 256 subkey hypotheses– whenever
more than 2000 traces are used for testing. It verifies the correctness of the
LDDA that only the correct hypothesis yields a correct decomposition of the
leakage distribution. The four plots also show that the KS-distance drops when
increasing the number of testing traces. In particular, the averaged KS distance
for the correct subkey hypothesis drops from 0.273 all the way to 0.097. While for
the wrong hypotheses, the average drops from 0.279 to around 0.112. The reason
is that the computed distance depends on two main factors: (1) the correctness of
the prediction of the leaking set YM (the effect exploited by LDDA); and (2) the
sampling errors: viewing the observed leakage (the empirical one) as the samples
from its underlying distribution (the true one approximated during the profiling).
The law of large numbers implies that the empirical distribution of the leakage
converges to its underlying distribution when increasing the number of leakages.
Therefore, using more testing traces reduces the influence of the sampling error
and hence decreases the overall KS distance metric. As a consequence, the correct
hypothesis becomes better distinguishable from the wrong guesses.

5.2 LDDA Without Profiling

Our second group of experiments carries out the LDDA without a profiling stage
as described in Section 3.4. Each experiments estimate different combinations of
the required parameters in the presented optimization problem in equations (6)
and (7). The guessing entropy from [21] is used for the evaluation of the attack.
That is, the subkey k is said to have guessing entropy t if the KS distance for k
is on average the t-th smallest value among all KS distances for all hypotheses.
Results are summarized in Table 1.

Table 1. Performance evaluation using Guessing Entropy (GE) for the non-profiling
LDDA. Best case is evaluated with optimal estimation of parameters; Worst case is
with non-optimal estimation.

Number of Traces 20,000 40,000 60,000 80,000 100,000

GE (average case) 19.74 16.65 4.02 2.93 1.31

GE (worst case) 30 33 11 9 5

GE (best case) 9 2 2 1 1

It can be seen from the table that the correct subkey k has very low guessing
entropy of 1 or 2 if more than 40,000 traces are used in the optimal estimation
cases. Even for the worst estimation case shown in the table, the guessing entropy
is still 33. The average estimation cases indicate that the non-profiling LDDA
enables a reasonable attack – the guessing entropy is kept at an acceptable level–
whenever more than 60,000 measurements are used.

It can be seen that the non-profiling LDDA needs much more traces to suc-
ceed comparing to the profiling LDDA. Notice that the latter serves as the closest

13

approximation to the real leakage function and the non-profiling LDDA here is
merely derived from a coarse modeling of the leakage function – a noised linear
transformation of the Hamming weight. The performance difference between the
two methods indicates that a more precise estimation of sub-distributions yields
better attacking performance for the non-profiling LDDA.

5.3 Experiments for Leaking Set Collision Attack

The third group of experiments mounts the LSCA described in Section 4. Fig-
ure 3 shows the hypothesis testing of one LSCA attack using 10,000 to 40,000
traces. The correct subkey hypothesis k = 108 gives clear lowest KS distance
metric when more than 15,000 traces are used. The distinguishability of the cor-
rect subkey increases with the number of traces that are used. Similar to the
situation of profiling LDDA, we can observe a drop in the magnitude of the
KS distance for the same hypothesis when the number of traces increases. The
reason is still the reduction of sampling errors by using more traces.

In addition, we use the provided 100,000 traces to run as many independent
experiments as possible for evaluating the LSCA attack. Table 2 summarizes the
attacking performance using guessing entropy and t-th order success rate. It can
be seen that the LSCA starts a stable success (GE = 1 and 1st order success
rate is 100%) with more than 12288 traces, namely, 48 traces per plaintext byte.
It is interesting to see that even with a total of 8192 traces (32 traces per plain-
text), making 4 guesses still ensures 2/3 success rate. The overall performance
is much better than the non-profiling LDDA. However, the comparison with the
profiling LDDA shows that the LSCA loses some success rate and requires more
traces. The possible reason is that LSCA expands the sampling error. Since the
two observed distributions Dx

M
[Λ] and Dx′

M
[Λ] are two sampling distributions

from the same underlying distribution because of the set collision, the distance
Dist(Dx

M
[Λ]‖Dx′

M
[Λ]) is composed of two components: the distance from Dx

M
[Λ]

to the underlying distribution and the distance from the underlying distribution
to Dx′

M
[Λ]. Although the compositional effect is not necessarily as strong as dou-

bling the distance, it is very likely that the sampling error is expanded in the
LSCA. While the profiling LDDA only measures one sampling error: the differ-
ence between the observed Dx

M
[Λ] and its underlying distribution. No expansion

of sampling error is occurred in the profiling LDDA. Nevertheless, with the slight
sacrifice of success rate, the LSCA makes the full use of leakage similarity from
the generated the leaking set collisions and therefore does not need assuming
profiling capability nor the full control of masks.

6 Conclusion

This work proposes two univariate attacks to overcome the limited protection
achieved with the low entropy masking schemes. The first attack—Leakage Dis-
tribution Decomposition Attack (LDDA)—reveals the composition of the ob-
served leakage distribution. The second attack—Leaking Set Collision Attack

14

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1652

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(a)

0 50 100 150 200 250
0.15

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

X: 108
Y: 0.1504

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(b)

0 50 100 150 200 250
0.12

0.125

0.13

0.135

0.14

0.145

0.15

0.155

0.16

X: 108
Y: 0.1236

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(c)

0 50 100 150 200 250
0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

X: 108
Y: 0.08983

Subkey Hypothesis

A
ve

ra
ge

d
K

S
 D

is
ta

nc
e

(d)

Fig. 3. LSCA hypothesis testing: Kolmogrov-Smirnov distance (y-axis) between ob-
served leakage distributions for the pairings induced from subkey hypothesis (x-axis).
Experiments use 10,000 traces (a); 15,000 traces (b); 20,000 traces (c); and 40,000
traces (d).

(LSCA)—extends the concept of side channel collision attacks and does not rely
on detailed knowledge of the leakage model or function. Both of the two at-
tacks compare leakage distributions and therefore they have a relatively high
requirement on the number of traces. The attacks show that studying a coun-
termeasure with resistance of the first, second or even higher order CPA/DPA
is not sufficient to guarantee the resistance to other univariate attacks.

Acknowledgments

We would like to thank the reviewers for the helpful comments. This material
is based upon work supported by the National Science Foundation under Grant
No. 1261399.

15

Table 2. LSCA Performance Evaluation

Number of Traces 4096 8192 12288 16384

Guessing Entropy 34.17 5.33 1.00 1.00

1st order Success Rate 0 33.3% 100.0% 100.0%

4th order Success Rate 33.3% 66.7% 100.0% 100.0%

References

1. The dpa contest v4, http://www.dpacontest.org/v4/.
2. S. Bhasin, W. He, S. Guilley, and J.-L. Danger. Exploiting fpga block memories for

protected cryptographic implementations. In Reconfigurable and Communication-
Centric Systems-on-Chip (ReCoSoC), 2013 8th International Workshop on, 2013.

3. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 135–152. Springer Berlin / Heidelberg, 2004.

4. J.-S. Coron and L. Goubin. On boolean and arithmetic masking against differential
power analysis. In Cryptographic Hardware and Embedded Systems CHES 2000,
volume 1965 of Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2000.

5. J. Doget, E. Prouff, M. Rivain, and F.-X. Standaert. Univariate side channel
attacks and leakage modeling. Journal of Cryptographic Engineering, 1:123–144,
2011.

6. B. Gierlichs, L. Batina, P. Tuyls, and B. Preneel. Mutual Information Analysis.
Cryptographic Hardware and Embedded Systems–CHES 2008, pages 426–442, 2008.

7. J. Golic and C. Tymen. Multiplicative masking and power analysis of aes. In
Cryptographic Hardware and Embedded Systems - CHES 2002, volume 2523 of
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003.

8. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology CRYPTO 99, volume 1666 of Lecture Notes in Computer
Science, pages 789–789. Springer Berlin / Heidelberg, 1999.

9. K. Lemke-Rust and C. Paar. Analyzing side channel leakage of masked implementa-
tions with stochastic methods. In J. Biskup and J. Lopez, editors, Computer Secu-
rity ESORICS 2007, volume 4734 of Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2007.

10. K. Lemke-Rust and C. Paar. Gaussian mixture models for higher-order side chan-
nel analysis. In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware
and Embedded Systems - CHES 2007, volume 4727 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2007.

11. A. Moradi, O. Mischke, and T. Eisenbarth. Correlation-enhanced power analy-
sis collision attack. In S. Mangard and F.-X. Standaert, editors, Cryptographic
Hardware and Embedded Systems, CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 125–139. Springer Berlin / Heidelberg, 2010. 10.1007/978-
3-642-15031-9 9.

12. M. Nassar, S. Guilley, and J.-L. Danger. Formal analysis of the entropy / security
trade-off in first-order masking countermeasures against side-channel attacks. In

16

Progress in Cryptology INDOCRYPT 2011, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2011.

13. M. Nassar, Y. Souissi, S. Guilley, and J.-L. Danger. Rsm: A small and fast coun-
termeasure for aes, secure against 1st and 2nd-order zero-offset scas. In Design,
Automation Test in Europe Conference Exhibition (DATE), 2012, 2012.

14. E. Oswald and S. Mangard. Template attacks on masking – resistance is futile. In
M. Abe, editor, Topics in Cryptology CT-RSA 2007, volume 4377 of Lecture Notes
in Computer Science, pages 243–256. Springer Berlin Heidelberg, 2006.

15. T. Popp and S. Mangard. Masked dual-rail pre-charge logic: Dpa-resistance with-
out routing constraints. In J. Rao and B. Sunar, editors, CHES 2005, Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2005.

16. E. Prouff and M. Rivain. A generic method for secure sbox implementation. In
S. Kim, M. Yung, and H.-W. Lee, editors, Information Security Applications, vol-
ume 4867 of Lecture Notes in Computer Science, pages 227–244. Springer Berlin
Heidelberg, 2007.

17. P. Schaumont and K. Tiri. Masking and dual-rail logic don’t add up. In P. Paillier
and I. Verbauwhede, editors, CHES 2007, Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2007.

18. W. Schindler, K. Lemke, and C. Paar. A stochastic model for differential side
channel cryptanalysis. In J. Rao and B. Sunar, editors, Cryptographic Hardware
and Embedded Systems CHES 2005, volume 3659 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2005.

19. K. Schramm, G. Leander, P. Felke, and C. Paar. A Collision-Attack on AES. In
Cryptographic Hardware and Embedded Systems - CHES 2004. Springer Berlin /
Heidelberg, 2004.

20. K. Schramm and C. Paar. Higher order masking of the aes. In D. Pointcheval,
editor, Topics in Cryptology CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 208–225. Springer Berlin Heidelberg, 2006.

21. F.-X. Standaert, T. G. Malkin, and M. Yung. A unified framework for the analysis
of side-channel key recovery attacks. Advances in Cryptology — EUROCRYPT
2009, pages 443–461, 2009.

22. N. Veyrat-Charvillon and F.-X. Standaert. Mutual information analysis: How,
when and why? In C. Clavier and K. Gaj, editors, Cryptographic Hardware and
Embedded Systems - CHES 2009, volume 5747 of Lecture Notes in Computer Sci-
ence, pages 429–443. Springer Berlin Heidelberg, 2009.

23. C. Whitnall, E. Oswald, and L. Mather. An exploration of the kolmogorov-smirnov
test as a competitor to mutual information analysis. In E. Prouff, editor, Smart
Card Research and Advanced Applications, volume 7079 of Lecture Notes in Com-
puter Science, pages 234–251. Springer Berlin Heidelberg, 2011.

17

