
Bounded, yet Sufficient? How to Determine
Whether Limited Side Channel Information

Enables Key Recovery

Xin Ye, Thomas Eisenbarth and William Martin

Worcester Polytechnic Institute, Worcester, MA 01609, USA
{xye,teisenbarth,martin}@wpi.edu

Abstract. This work presents a novel algorithm to quantify the rela-
tion between three factors that characterize a side channel adversary:
the amount of observed side channel leakage, the workload of full key
recovery, and its achievable success rate. The proposed algorithm can be
used by security evaluators to derive a realistic bound on the capabilities
of a side channel adversary. Furthermore, it provides an optimal strat-
egy for combining subkey guesses to achieve any predefined success rate.
Hence, it can be used by a side channel adversary to determine whether
observed leakage suffices for key recovery before expending computation
time. The algorithm is applied to a series of side channel measurements
of a microcontroller AES implementation and simulations. A compari-
son to related work shows that the new algorithm improves on existing
algorithms in several respects.
Keywords: Side Channel Analysis, Security Evaluation, Guesswork,
Full Key Recovery, Weak Maximum Likelihood.

1 Motivation

Side channel analysis (SCA) of embedded cryptographic implementations has
been studied for more than 15 years [6,8]. Recently, there has been a growing
interest in studying and quantifying the amount of information that can be
extracted from a limited number of side channel observations. Knowing how
much leakage actually suffices for a full key recovery is of high practical relevance.
This question is closely tied to the computational capabilities of the side channel
adversary, since SCA often include an extensive key search component. A good
comparison of algorithms using tradeoffs between side channel information and
computation are the submissions to the DPA contest [1], where the success metric
was solely based on the number of needed observations, without a clear limitation
of computation. Another emerging trend in SCA are new attacks that are made
feasible only by tapping into the massive parallel computing power as provided
by GPUs, such as [12]. This indicates that computational power of the adversary
needs to be considered as part of side channel security metrics. Finally, leakage
resilient cryptography usually assumes limited leakage of a given key or secret
state (c.f. [7,4,11,19]) before it is updated. The schemes provide security if an



adversary cannot successfully exploit more than the bounded leakage. In all
of these cases, it is of high interest to know how much leakage the adversary
can get from the observed measurements. Closely related is the question of the
remaining attack complexity—given the limited side channel information—and
the resulting search strategy.

So far only little effort has been put into the quantification of the remaining
computational complexity when limited leakage is available but insufficient to
narrow the key space down to a simply searchable size. While systematic met-
rics to quantify side channel leakage exist [10,21,17,18], many of them perform
relative comparisons of implementations or attacks [5,9,16]. The most promising
approach has been presented in [22,23]. The authors present a full key enumer-
ation algorithm [22] as well as a key ranking algorithm [23] in the case where
only limited side channel leakage can be extracted. These algorithms enables
estimating the remaining full key recovery complexity even if the experimental
verification is infeasible. However their algorithms assume the correct key to be
known. In other words, their results can be used by evaluation labs, but not by
the key recovering adversary.

Our Contribution This work proposes an alternative approach to evaluate
side channel security for full key recovery attacks. The security level is expressed
as the relation between the amount of observed leakage, the success probability
and the necessary attack complexity. Following this approach, a constructive Key
Space Finding (KSF) algorithm is presented. It not only provides an estimation
on the remaining guessing complexity, but also allows the adversary, for the first
time, to derive a probabilistic winning strategy for each specific side channel
observation. Further, by statistical bootstrapping the size of returned key spaces,
the algorithm can also be used by evaluation labs to approximate a realistic
security level for various extents of information leakage.

2 Background

This section formalizes common assumptions for SCA and revisits useful metrics
and algorithms that quantifies side channel leakages.

2.1 Adversarial Model and Notations

Most SCA follow the divide-and-conquer strategy. The full secret key sk is di-
vided into b parts, i.e. sk = k1‖...‖kb where each subkey ki is a n bit string.
In the general setting of SCA, an adversary runs the crypto algorithm Esk()
and records side channel observations. This is followed by a leakage exploitation
phase where the adversary independently recovers information about each sub-
key ki from the measured observations. We assume the adversary to be q-limited,
i.e. she can run the algorithm up to q times and get the respective leakages.
We denote the inputs as Xq = [Xi,j ]b×q ∈ (Fn2 )bq where each row [Xi,j ] with
1 ≤ j ≤ q corresponds to the inputs at the i-th part for the q queries. Similarly,

2



the leakages are denoted as Lq = [Li,j ]b×q ∈ Rbq. Each row [Li,j ] with 1 ≤ j ≤ q
represents the q leakage observations related to the i-th subkey part ki. With the
knowntexts (either plaintexts or ciphertexts)Xq and leakages Lq, the adversary
chooses a side channel distinguisher such as DPA, CPA, MIA, template attack,
etc. and outputs an ordered list of subkey candidates gi,[1], gi,[2], ... for guessing
the correct subkey ki. Here, [·] indicates a reordering of subkey candidates in
the order of decreasing likelihood, i.e. gi,[j] refers the j-th most likely candidate.
For example, for CPA it is the descending order of the absolute value of Pearson
correlation coefficients; for template attacks it is the descending order of the
posterior probabilities.

2.2 Existing Metrics and Maximum Likelihood Principle

For evaluating side channel security on subkey recovery, the framework in [18]
proposes the (t-th order) Success Rate (SR) and the Guessing Entropy (GE). The
t-th order SR is defined as SRki(t) = Pr[ki ∈ {gi,[1], ..., gi,[t]}]. It describes the
probability that the correct subkey ki is compromised in the first t prioritized
guesses. The GE is defined as the expected rank of the correct subkey, i.e.,
GE :=

∑2n

t=1 t · Pr[ki = gi,[t]]. Clearly, GE can be expressed as a function from
the t-th order SR.

In addition, Pliam introduces marginal guesswork in [14] (also referred to as
work-factor in [13]) as a metric to benchmark password recovery attacks, or more
generically, smart exhaustive key searches. ‘Smart’ refers to adversaries that
have and utilize prior information about the key distribution. Thus, marginal
guesswork is well suited to describe adversaries that can assign probabilities to
subkey candidates. In fact, it relates the success probability to its minimum
computational complexity. More specifically, let σ ∈ [0, 1] be the probability of
success the adversary expects to achieve, the σ-marginal guesswork is defined
to be the minimum number t of guesses to ensure finding the correct subkey
ki with at least σ success rate, i.e. wσ(ki) = min{t :

∑t
j=1 pi,[j] ≥ σ}. Here

subkey guesses gi,[j] are sorted decreasingly in terms of probabilities such that
pi,[j] ≥ pi,[j+1] ≥ . . . where pi,[j] = Pr[ki = gi,[j]].

This approach is also known as Maximum Likelihood (ML) attack. Based on
side channel information, namely the inputs xq and leakages lq, it first assigns
posterior probability pi,j = Pr[gi,j | xq, lq] to subkey candidates gi,j . Next, it
enumerates them in a descending order gi,[j] according to the posterior likelihood
pi,[j]. Since pi,j is interpreted by definition as the likelihood of the true subkey ki
being the candidate gi,j , the guess gi,j ensures subkey success rate pi,j . Therefore
the t-th order success rate using ML approach is

SRki(t) =
t∑

j=1
pi,[j] (1)

It also establishes a connection between the t-th order SR and the σ-marginal
guess work as : wσ(ki) = min{t : SRki(t) ≥ σ}. To sum up, the adversary using

3



maximum likelihood approach is expected to have the minimum complexity to
find the correct subkey.

2.3 Full Key Ranking Algorithm

The aforementioned metrics have mostly been applied for subkey recovery exper-
iments. This changed with the algorithms by Veyrat-Charvillon et al. in [22,23].
The authors present algorithms to enumerate full keys [22] and to estimate the
rank of the correct full key among all full key candidates [23]. With the latter
algorithm they manage, for the first time, to approximate the computational
complexity of successful side channel adversaries for cases where experimental
verification is no longer possible or just too expensive. This means, the work
pioneers in actually getting meaningful metrics for the expected guesswork of an
adversary achieving full key recovery. Furthermore, they apply statistical boot-
strapping to achieve cost evaluation and approximate a ML approach adversary
for full key recovery.

The rank estimation algorithm [23], referred to as VGS algorithm, works as
follows: As input it receives probabilities for all subkeys from a single side channel
experiment, as well as the knowledge of the correct key (and consequently its
probability). After sorting each of these subkey probabilities decreasingly, the
different dimensions are combined to create the key space. Next, volumes where
keys have higher (or lower) probabilities than the correct key are removed from
the space and their size is added to the lower (or upper) bound for the rank of the
correct key. The VGS algorithm stops either after a set time or once the bounds
are close enough, i.e. once the key rank has been narrowed down sufficiently.
Finally, it outputs (upper and lower bounds for) the key rank of the correct key.

By itself, the key rank only provides the placement of the probability of the
correct key. It cannot specify, in each individual side channel experiment, how
much probability of success one can achieve by guessing full key candidates up
to the correct key. Instead, the probability of success is derived by statistical
bootstrapping: the side channel experiment is repeated e.g. n = 100 times, and
the success probability is derived as the percentiles of the key ranks in different
experiments are turned into success probabilities. The VGS algorithm is used
for comparison and as a benchmark for our algorithm that we introduce next.

3 Evaluating Full Key Security

Side channel leakage enables assigning scores or posterior probabilities to subkey
candidates. However, to verify the correctness of a guess, different subkey parts
must be combined and checked. That is to say, as long as the leakage is not
strong enough to reveal each subkey part with a negligible error probability, the
remaining full key security is not trivially evaluated and is worthy of investiga-
tion. Conceptually, the ML approach can be extended to cover full key recovery
attacks so that all the metrics described in Section 2.2 can also be applied to

4



evaluate full key security. However, the size of the key space is 2bn, e.g. in AES-
128 it is 2128, and it makes it infeasible to calculate the posterior probabilities
to all full key candidates and then to enumerate them strictly following the ML
principle. In this section, we introduce a weaker but computationally efficient
approach to evaluate full key security. We call this approach the weak Maximum
Likelihood (wML) approach. We describe its basic idea, followed by a Key Space
Finding (KSF) algorithm as its realization and explain how it differs from a true
ML approach.

3.1 Weak Maximum Likelihood Approach

Since computing and enumerating probabilities for all full key candidates is
infeasible, the adversary can, nevertheless, adopt the following straightforward
strategy. For each subkey part ki, the adversary only considers the top ei subkey
candidates. When making full key guesses, she checks the Cartesian product of
such selected candidates from all subkey parts. More specifically, the adversary
considers the prioritized guesses {gi,[1], ..., gi,[ei]} for the true subkey part ki and
verifies all possible combinations {g1,[j1]‖...‖gb,[jb] where 1 ≤ ji ≤ ei, 1 ≤ i ≤ b}
as full key candidates. It is clear that this approach ensures a subkey success
rate of SRki(ei) with ei guesses for the subkey part ki. Therefore, a full key
success rate of

∏b
i=1 SRki(ei) is achieved, implying a full key verification cost of∏b

i=1 ei. The vector e = (e1, ..., eb) is called an effort distributor or simply a node.
The node defines how the adversary distributes her verification complexity (or
guesswork) over different subkey parts. It is easy to see from the definition above
that an effort distributor not only determines the full key success rate Prob(e)
that is achieved through guessing all candidates in the Cartesian product, but
also determines the full key verification cost Cost(e), or guesswork. They are
expressed as

Prob (e) =
b∏
i=1

SRki(ei) =
b∏
i=1

ei∑
j=1

pi,[j] Cost (e) =
b∏
i=1

ei (2)

In general, the adversary is interested in finding the minimal necessary guess-
work to achieve a σ success rate for a full key recovery attack. The procedure
of finding minimal full key recovery guesswork through finding optimal effort
distributors is referred to as the weak Maximum Likelihood (wML) approach.
Intuitively and informally, the observed leakage lq reveals different amounts of
secret information for different subkey parts. The more information is leaked of
a certain key part, the more confidence the adversary gets for prioritized subkey
guesses. Therefore, she can include more subkey candidates for the subkey posi-
tions where she has less confidence in the correctness of the output hypothesis
(cf. e.g. [20]).

5



Formally, the wML approach can be stated as an optimization problem with
the objective function and restriction condition defined as below.

Objective: Minimize Cost(e) (3)
Restriction Condition: Prob(e) ≥ σ (4)

We will show how to solve this optimization problem in Section 3.3.
There are differences between the wML and the true ML approaches. In ML,

all full key candidates are ordered according to their posterior probability. In
wML, this is not necessarily the case. In fact, full key candidates that are inside
the Cartesian product of selected subkey guesses are prior to combinations that
are not defined by the effort distributor. For example, given an effort distributor
e = (e1, ..., eb), the full key candidate gx = g1,[e1]‖g2,[e2]‖g3,[e3]‖...‖gb,[eb] is inside
the Cartesian product, while the candidate gy = g1,[e1−1]‖g2,[e2+1]‖g3,[e3]‖...‖gb,[eb]
is not. The former is to be considered by the wML approach while the latter is
not. Therefore wML sets priority of the former over the latter. However, it is
not always the case that gx is more probable than gy. This means using wML
will unavoidably cause some ordering violation. The impact of such violation is
discussed in Section 4.3 and it turns out that the penalty is rather low, which
confirms the usability of wML approach.

3.2 The Search Domain and its Calculus Model

An optimization problem in the continuous domain can usually be turned into
a searching problem. Tools from differential calculus such as the gradient vector
can help providing efficient search directions. Here we adjust it to our search
space which is a discretized domain and build the model for the problem of
searching optimal effort distributors. All concepts introduced here will be used
in the KSF algorithm in Section 3.3. For a clear illustration we use AES-128 as
an example. It can be easily applied in other block cipher scenarios.

Structure of the Search Domain We first define the search space. Each effort
distributor e is treated as a node in the b-dimensional discrete space. For AES-
128, the key has 16 subkey parts (bytes) and each effort entry—the number of
guesses for each subkey part—can be any integer between 1 and 256 inclusively.
Therefore, the entire search space is 16 dimensional with each dimension taking
integers in [1 : 256], namely E = [1 : 256]16. The optimization problem is now
equivalent to finding the optimum node e∗ ∈ E that minimizes the full cost or
guesswork while achieving the required full key success probability. To better
understand the structure of the search space and enable an efficient search, we
introduce the following concepts.

Definition 1: a node e′ = (e′1, ..., e′b) is called the j-th decremental neighbor of
the node e = (e1, ..., eb) if e′j = ej − 1 and e′i = ei for all i 6= j. It is also denoted
as e−j = (e1, ..., ej − 1, ..., eb)). Similarly, the j-th incremental neighbor of node
e is denoted as e+

j = (e1, ..., ej + 1, ..., eb).

6



Definition 2: a node e ∈ E is said to be σ-feasible if it satisfies the restriction
condition (4). The set of all σ-feasible nodes is denoted as Eσ := {e | Prob (e) ≥
σ}.

Definition 3: a σ-feasible node e ∈ Eσ is said to be on the boundary if none of
its decremental neighbors is σ-feasible, i.e. e−j /∈ Eσ,∀j. The set of all nodes on
the boundary is called the σ-feasible boundary and denoted as

∂ (Eσ) :=
{
e ∈ Eσ | e−j /∈ Eσ,∀j

}
Definition 4: a node e∗ is called σ-optimal if it is a σ-feasible node and has
minimal complexity among all σ-feasible nodes, i.e. Cost(e∗) ≤ Cost(e),∀e ∈ Eσ

An immediate but important result can now be summarized as follows.

Boundary Property: the σ-optimal nodes are inside the σ-feasible boundary,
i.e. e∗ ∈ ∂ (Eσ) ⊂ Eσ.

The proof is straightforward. If e∗−j ∈ Eσ, then

Cost
(
e∗−j

)
= Cost (e∗) ·

e∗j − 1
e∗j

< Cost (e∗)

contradicting the definition of node e∗ being σ-optimal.
This property explains the fact that if making one less subkey guess at any

subkey part from an optimal effort distributor, the achieved success rate does
not reach the desired level σ. It indicates that the wML approach is to find an
σ-optimal effort distributor from the σ-feasible boundary.

A Calculus Model for the Search Problem Now we define some calculus
tools for enabling an efficient search algorithm for finding the optimum node
in the discrete search domain. For a function in continuous space, the partial
derivative ∂f

∂xj
indicates the instantaneous change of the output of the function

f caused by the change at the j-th coordinate xj of the input. We define similar
concepts for the objective function Cost(e) and restriction condition Prob(e).

The discrete nature of our search domain [1 : 256]16 gives two situations: the
change caused by unit incrementing or decrementing on each effort coordinate
ej . More specifically, we define the incremental partial derivative of Prob(e) with
respect to ej as

∇P+
j = Prob(e+

j )− Prob(e) = [SRkj (ej + 1)− SRkj (ej)
SRkj (ej)

]Prob(e) (5)

Each ∇P+
j is a non-negative value1 and it indicates the amount of additional

success rate that could be achieved by incrementing effort by 1 at the j-th
coordinate. Similarly, the decremental partial derivative of Prob(e) is defined as
1 The cases are considered separately if incrementing or decrementing is impossible,
i.e. ej = 1 or ej = 256 for equations (5), (6) and (7).

7



∇P−j = Prob(e)− Prob(e−j ) = [SRkj (ej)− SRkj (ej − 1)
SRkj (ej − 1)

]Prob(e) (6)

This is also a non-negative value and it tells the loss of full key success rate
caused by decreasing effort by 1 at the j-th coordinate.

With the above defined partial derivatives, we can now obtain the incre-
mental gradient ∇P+ = (∇P+

1 , ...∇P
+
16) and the decremental gradient ∇P− =

(∇P−1 , ...∇P
−
16) of the restriction condition Prob(e). It is important to see that

the coordinates for the largest partial derivatives in the incremental (or decre-
mental respectively) gradient vector tells the full key success rate is increased
(or decreased resp.) mostly due to a unit effort increment (or decrement resp.).

The same concept is defined for the objective function Cost(e). The gra-
dient vectors in both incrementing and decrementing cases result in the same
expression because

∇C+
j = Cost(e+

j )− Cost(e) =
∏
i6=j

ei = Cost(e)− Cost(e−j ) = ∇C−j (7)

For notational convenience, both ∇C+
j and ∇C−j are replaced by ∇Cj and the

gradient of the full key complexity Cost(e) becomes ∇C = (∇C1, ...∇C16).
Again, each coordinate is a non-negative value and it indicates the change in full
key recovery complexity which is caused by incrementing/decrementing effort by
1 at the j-th entry of effort node e.

Lastly, we consider the direction vector u which is the negation of the gradient
−∇C projected onto the hyper-surface that is perpendicular to the gradient ∇P .

u = −∇C projected onto (∇P )⊥ = ∇P · ∇C
‖∇P‖2 ∇P −∇C (8)

where ∇P = (∇P1, ...,∇P16) is the averaged gradient, i.e. ∇Pj = (∇P+
j +

∇P−j )/2. This direction vector u satisfies the intuition to keep the restriction
condition Prob(e) unchanged (seen from the vanishing of the inner product u ·
∇P = 0) while decreasing the objective function Cost(e) as much as possible.
A visualization can be seen in Figure 2.

3.3 An Optimized Key Space Finding Algorithm

We now show how to realize the weak maximum likelihood approach to find the
optimum effort distributor by using the KSF algorithm.

The inputs of the algorithm include the desired full key success probability
σ and the sorted posterior probabilities pi,[j] (and hence the subkey success rates
SRki(t) according to equation (1)) for all subkey candidates gi,[j]. Note that this
algorithm, unlike the VGS algorithm, does not require knowledge of the correct
key, i.e. can also be used by a key recovering adversary. The applicability of

8



this algorithm is not restricted to the profiling adversary. In [22] it is suggested
that a non-profiling adversary can also assign likelihoods to subkey candidates
to achieve a justified full key ranking, which could also be applied in our case.

The algorithm returns two outputs: the minimum verification complexity
min {Cost (e) | e ∈ Eσ} that ensures the desired full key success rate σ together
with an optimal effort distributor e∗ = argmin {Cost (e) | e ∈ Eσ} that achieves
this complexity lower bound.

Fig. 1. Flow Chart of the KSF algorithm.

The flow chart of the KSF algorithm is shown in Fig. 1. It uses several
subroutines. The algorithm begins by generating a random node e ← [1 :
256]16 using RandomGen(). This node serves as the starting point in the search-
ing space. The initial node is then passed sequentially into two subroutines:
SearchTowardsBoundary() and SearchAlongBoundary(). The former moves a
node onto the feasible boundary ∂(Eσ) by calling SearchUp() and SearchDown().
The latter searches for nodes within the boundary that feature an even lower
value of the objective Cost(e). It uses the Swap() family of subfunctions. Note
that the algorithm is a probabilistic algorithm to finding the point on the surface
that has minimal cost. It finds local minima. In practice, it is executed several
times to ensure that the local optimization also yields the global minimum.

The SearchTowardsBoundary() Function The task of this function is to move
a node onto the feasible boundary ∂(Eσ). If the input node e does not satisfy
the restriction condition, i.e. Prob(e) < σ, it calls the function SearchUp()
(as shown in Alg. 1) to search for a node that is σ-feasible. More specifically,
SearchUp() iteratively increases the number of subkey guesses for some part of
the subkey and updates the node. In each iteration, the search direction, i.e. the
coordinate of the subkey part that needs to be incremented, is determined by the
incremental gradient ∇P+ as defined in Section 3.2. The effort coordinate that
maximizes the gain in success rate through a unit effort increase is chosen, i.e. i =
argmaxj{∇P+

j }. The node is updated by a unit increment on the chosen effort
coordinate. The process continues until a σ-feasible node is reached, namely, the
restriction condition is satisfied as Prob(e) ≥ σ.

Now we have a σ-feasible node—either it is an initially generated node that al-
ready satisfies the restriction condition or it is a node returned from SearchUp().

9



Algorithm 1 SearchUp()
1: while Prob(e) < σ do
2: i← argmaxj{∇P+

j }
3: ei ← ei + 1
4: end while
5: return e

Algorithm 2 SearchDown()
1: while e /∈ ∂(Eσ) do
2: i← argmaxj{∇Cj s.t. Prob(e)−∇P−j ≥ σ}
3: ei ← ei − 1
4: end while
5: return e

The remaining task is to search for a node on the feasible boundary ∂ (Eσ) since
the optimal effort distributors can be found only on the boundary. The function
SearchDown() is called to complete this task. In each iteration, the gradient
vector ∇C of the objective function Cost(e) is used to determine the search di-
rection, i.e. the effort coordinate that needs to be decremented as shown in line
2 of Alg. 2. It reflects the direction where the objective function Cost(e) has the
biggest complexity drop through a unit effort decrementing while not violating
the restriction condition. This means that the updated node is still σ-feasible.
The process continues until the Boundary Property (as defined in Section 3.2)
is satisfied. In other words, it returns a node e ∈ ∂ (Eσ).

The SearchAlongBoundary() Function So far the search algorithm has found
a node on the σ-feasible boundary. The next step is to search for nodes within
the boundary, which achieve σ-feasibility at a lower cost Cost(e). The subroutine
SearchAlongBoundary() is called to accomplish this task. We have seen from
the Boundary Property in Section 3.2 that any decremental neighbor of a node
on the boundary is not σ-feasible. It implies that the only way to find a node with
lower full key cost is through trading-off (or swapping) efforts between different
coordinates, which is realized in the Swap() family of subroutines.

More specifically, the coordinates for swapping are determined from the di-
rection vector u defined in equation (8) as it follows the intuition that the search
should decrease the overall guesswork while not compromising the full key suc-
cess probability. The direction vector u suggests to increase effort on coordinate
j if uj is positive, and decrease if negative. The order of the effort coordinates
being incremented or decremented is determined by the order of the absolute
values of the entries uj . The higher the absolute value, the higher the priority
that is assigned to the coordinates for incrementing and decrementing.

Similar to search problems defined in continuous domain, the algorithm
also handles the problem of local minima that prevent effective searching. In
particular, we implement three different swapping modes –HorizontalSwap(),
VerticalSwap() and BlockSwap() – to “escape” from many local minima and
therefore mitigate the risk of being terminated in advance. The HorizontalSwap()
allows trading-off multiple efforts between the positive most and negative most
coordinates, i.e. u+

i and u−j . The VerticalSwap() in each iteration enables
trading-off one effort between multiple coordinates where ujs are of different

10



Algorithm 3 SearchAlongBoundary()
1: e′ ← Swap()
2: while Cost(e) > Cost(e′) do
3: e← e′

4: end while
5: return [e, Cost(e)]

Fig. 2. Direction vector u is the projection
of cost gradient −∇C onto (∇P )⊥

signs. Finally, the BlockSwap() mode enables trading-off multiple efforts on mul-
tiple coordinates. All three modes ensure that the swap does not compromise the
required full key success probability, i.e. e ∈ Eσ always hold. The updated node
(after efforts being swapped) is again passed through SearchDown() to ensure
that the search is still performed on the boundary. The three modes prevent
infinite loops because the swap action occurs only if the cost of the updated
node is lower than the cost for the session node.

As shown in Alg. 3, a temporary node e′ is returned from the Swap() family
of functions in each iteration. If the cost for the temporary node is lower than the
current session node, then the session node e is replaced by before being passed
into the next iteration. Otherwise the search is terminated and the algorithm
outputs the current node e and its full key verification cost Cost(e).

3.4 Usage of the KSF algorithm

Full key security evaluation used to stay as an analysis that is beyond computing
power. The KSF algorithm provides practical meaning to the security evaluation.
Firstly, the adversary can use it to determine if the leakage is strong enough to
enable full key recovery at her accessible computing power. More specifically,
upon a particular set of observations (xq, lq), the returned global minimum of
Cost(e) serves as an individual lower bound of the optimum guesswork wσ. If
the guesswork is acceptable, the associated optimal effort distributor e provides
a winning strategy: checking all the full key candidates defined by the Cartesian
product of this optimal node. This strategy ensures he adversary with success
rate being at least σ. Even if in one session the observed leakages are not strong
enough, namely requires high wσ, she can just wait for the next session until a
"good" observation appeared. This can be the case if the guesswork is impacted
a lot from different observations, which is in fact verified in our experiments in
the next section.

Secondly, it can be used by a security evaluation lab. By feeding the algorithm
with independently generated observations (xq, lq), an evaluator can bootstrap
the individual lower bounds and obtain the distribution of the guesswork wσ at
any fixed σ. This informs the evaluator the resistance of some DUT against a

11



probabilistic SCA. In other words, if the adversary intends σ success rate, how
much chance does she have by waiting until a strong enough leakage occurs. A
simple example would be computing the expected lower bound of guesswork—
the average of all individual lower bounds—and using it as a metric. The metric
indicates the averaged level of security of the full key as the expectation is with
respect to various experiments, i.e. not only different choices of input xq, but
also leakages observations lq.

4 Experiment Results and Comparison

In this section we apply the proposed wML approach to practical side channel
leakage evaluation. We first explain the experimental setup. Next, we verify the
validity of the KSF algorithm and discuss its possible influencing factors. Finally,
we compare our approach and VGS algorithm. .

4.1 Experiment Setup and Posterior Probabilities Derivation

We conduct the leakage evaluation experiments in two settings: real measure-
ments and simulations. For the former, we target on an unprotected AES soft-
ware implementation, the RjindaelFurious [15] running on an 8-bit AVR ATXMega
A3B processor. A total of 200,000 measurements were taken using a Tektronix
DPO 5104 oscilloscope at a sampling rate of 200MS/s. Among all the collected
traces, 20,000 are used for building Gaussian templates. The remaining traces
are used as needed for the evaluation step. In the other setting, we simulate side
channel leakage using the widely accepted Hamming weight leakage model with
additive Gaussian noise. In both cases the targeted leakage is that of the s-box
output of the first round for each of the 16 state bytes.

As a preparation step of leakage evaluation, posterior probabilities for all
subkey candidates need to be estimated from side channel observations. The
probably most popular method is through Templates [2,10] where the adversary
creates a precise model of the leakage in the profiling phase and derives posterior
probabilities in the attack phase. An in-depth discussion of modeling errors for
Gaussian templates can be found in [3]. For our experiments, we build Gaussian
templates N (L;µv, Σ2

v) regarding the internal state Y = S(X ⊕K) over all the
16 bytes. In the attack phase, the adversary obtains the observations (xq, lq).
Since the predicted internal state for the j-th query is yi,j,g = f(xi,j , g) under
the subkey hypothesis g at the i-th subkey part, the observed leakage li,j has
conditional probability density P[li,j | g] = N (li,j ;µv, Σ2

v), where v = yi,j,g. The
Bayesian formula returns posterior probabilities given single observation li,j as

Pr[g | li,j ] = P[li,j | g] · Pr[g]∑
g∗ P[li,j | g∗] · Pr[g∗]

= P[li,j | g]∑
g∗ P[li,j | g∗]

12



Further, the adversary can obtain the posterior probability pi,g upon observing
all the q-leakages , which is expressed as

pi,g := Pr[g | li,1, ..., li,q] =
∏q
j=1 Pr[g | li,j ]∑

g∗
∏q
j=1 Pr[g∗ | li,j ]

(9)

Finally the posterior probabilities pi,g are sorted into a descending sequence
pi,[g] as detailed in Section 2.2. They determine the subkey success rates in
equation (1) which are the inputs for the KSF algorithm and the VGS algorithm.

4.2 Correctness and Influencing Factors of the KSF Algorithm

Verifying the correctness of the KSF algorithm is rather simple: if the returned
optimal effort distributor e∗ covers the ranks of the posterior probability of every
subkey ki, then the search space defined by the Cartesian product includes the
correct full key as explained in Section 3.1. In the following, we check if the
algorithm in fact achieves the promised success rate for various experiments.
We provide a set of observations for a range of q from 1 to 40: higher value for
q indicates more leaked information. We furthermore set 19 different levels of
desired success rate from 0.05 to 0.95 incrementing at 0.05. For each possible
(q, σ), 200 experiments are performed for the scenario using real measurements,
and 100 experiments for the scenario using simulated leakage.

Figure 3(a) compares the promised full key success rate of the KSF algorithm
with the actually achieved success rate for real measurements. One can see that
when the leakage is strong (high value of q), the achieved success rate is far
beyond what is promised. However, when the leakage is weak, the two rates only
differ slightly. A probable reason for the achieved success rate being lower than
the desired success rate for small values of q is due to the assumption that the
Gaussian templates fully capture the underlying leakage distribution. In fact, the
empirically obtained Gaussian templates only serve as approximation to the true
leakage distribution, and hence the derived posterior probabilities are unavoid-
ably biased. This claim is also supported by the results for simulated leakage, as
given in Figure 3(b), where the underachieving never happens. Nevertheless, for
almost all cases, especially when q ≥ 8, the KSF algorithm fulfills the promised
full key success rate.

Other influencing factors of the KSF algorithm are the leakage observations
and the number of independent initial nodes used for finding local minima,
as discussed in Section 3. To investigate their impact, we run 50 experiments
associated with independent sets of observations (xq, lq). In each experiment,
we compare the performance of KSF algorithm at fixed σ = 50% using 100 and
10000 initial nodes. The global minimum guessworks in each experiments are
returned and compared in Figure 4(a). The x-axis is the index of experiments
indicating a different set of observation (xq, lq) and the y-axis is the guesswork
in bits. As we can see, different leakage observations causes more than 40 bits
guesswork differences while the influence from the number of initial nodes (the
distance between the two curves) are rather small. In fact, the biggest difference

13



(a) (b)

Fig. 3. Correctness verification for real measurements (a) and simulation (b); The
success rate that KSF achieves (y-axis) is more than what it promised (x-axis).

between the two curves is less than 2.5 bits and most of the times the difference
is smaller than one bit.

4.3 Comparing the KSF algorithm with the VGS algorithm

As mentioned in Section 2.3, the VGS algorithm estimates the rank of the cor-
rect key among all full key candidates. By bootstrapping this rank statistic, or
namely, by repeating the rank estimation from different side channel observa-
tions, one can get a security evaluation based on the success percentiles to see
the rank distributions given random side channel inputs.

We first provide several comparisons between the bootstrapping of the rank
statistic from repeating VGS algorithm and the bootstrapping of guesswork wσ
KSF algorithm. Figure 4(b) compares the two over the real measurement. We fix
the full key success rate in KSF algorithm to σ = 50%. For each q (x-axis), we
perform 200 experiments using the algorithms on the same sets of observations.
The box plot indicates quartiles and outliers of the guesswork and rank statistics.
We see that the results from the two algorithms are relatively close to each
other. Further, the impact of different leakages on the rank statistic using VGS
algorithm is heavier than that on the guesswork returned from our algorithm.
This can be seen from the difference of the height of boxes for the two algorithms.
More importantly, we see that the medians of the two analyzed cases do not align
exactly. In fact, ours are always slightly higher than the VGS algorithm. The
reason is two folds. On one side, the KSF algorithm is following wML approach,
which introduces ordering violation comparing to the true ML approach, as
explained in Section 3. On another, since in each individual experiment the
VGS algorithm does not return a fixed success probability

∑rank
t=1 p[t] (the ML

adversary should guesses all the top rank full key candidates), the 50th percentile
of the rank does not necessarily ensure the adversary achieves 50% success rate in
an averaged experiment either. This is even more clearly seen from the simulated

14



0 10 20 30 40 50
20

25

30

35

40

45

50

55

60

65

Index of Experiment

G
ue

ss
w

or
k 

in
 b

its

 

 
100 Init Nodes
10000 Init Nodes

(a)

 1  4  8 12 16 20 24 28 32 36 40

20

40

60

80

100

120

q

G
ue

ss
w

or
k 

or
 R

an
k

 

 
Our Alg. σ = 0.5
VGS Alg.

(b)

 1  4  8 12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

G
ue

ss
w

or
k 

or
 R

an
k

 

 
Our Alg. σ = 0.5
VGS Alg.

(c)

 1  4  8 12 16 20 25 30 35 40

0

20

40

60

80

100

120

q

G
ue

ss
w

or
k 

or
 R

an
k

 

 
Our Alg. σ = 0.25
VGS Alg.

(d)

Fig. 4. Figure (a) shows the impact on guesswork (y-axis) from the number of starting
nodes for KSF algorithm is far less than the impact from the set of observations (xq, lq)
in each experiment (X-axis); Figure (b,c,d) compares the size of the key space from the
KSF algorithm to the key rank from the VGS algorithmĖxperiments are performed
over real measurement with success rate σ = 50% (b); over simulation with σ = 50%
(c); and over simulation with σ = 25% (d)

leakage scenario as shown in Figure 4(c) (rank compared to w0.5) and 4(d) (rank
compared to w0.25). In the simulated case, the ML approach is closer to the w0.25
bootstrapping with the weak ML approach. It indicates that the guessing the
top rank most likely full key candidates in the ML approach roughly returns
winning probability of 25%. In general, it might suggest the evaluator to find the
appropriate σ level such that the bootstrapping of the guesswork wσ matches
the bootstrapping of the key rank. By doing so, the evaluator can estimate
the success rate

∑rank
t=1 p[t] in an average experiment that the top rank full key

candidates contain.
The next comparison of the two leakage evaluation algorithms is between

the expected guesswork lower bound ( Figure 5(a) ) and the bootstrapping of the
rank (Figure 5(b)). Experiments use the data from the microcontroller measure-
ments. The x-axis for both represents the number q of accessible leakages in each
experiment. In Figure 5(a), the y-axis is the desired full key success probability

15



q

F
ul

l K
ey

 S
uc

ce
ss

 R
at

e

 

 

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(a)
q

F
ul

l K
ey

 S
uc

ce
ss

 R
at

e

 

 

5 10 15 20 25 30 35 40

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20

40

60

80

100

120

(b)

Fig. 5. Security evaluation using KSF algorithm showing the remaining guesswork
(color in (a)) and using VGS algorithm showing the key rank (color in (b)) over the
number of observations q (x-axis) and success rate/percentile (y-axis).

σ. The color or gray-scale for the pixel at coordinate (x, y) = (q, σ) represents
the expected lower bound (as explained in Section 3.4) of the guesswork in log
scale. The darker a pixel is, the more guesswork is needed to achieve the specified
success rate σ. In particular, the expected lower bound at each (q, σ) is derived
from 200 independent experiments. Each experiment uses an independent set of
observations (xq, lq) which yields different posterior probabilities pi,[g] computed
as described in Section 4.1. The number of initial node is set to 100 ( Figure 4(a)
already shows this number is sufficient). The global minimum guesswork from
the 100 searches is returned as the individual lower bound of the guesswork for
this single experiment. Upon the completion of the 200 experiments, the average
of the 200 individual lower bounds yields the expected lower bound as reflected
in the color of pixel in Figure 5(a). In short, the color at pixel (q, σ) indicates the
expected minimum guesswork that a q-limited adversary should spend in order
to achieve full key recovery with probability σ. In Figure 5(b), VGS algorithm
is executed with the same sets of observations (xq, lq). The returned 200 ranks
(represented in the color of each pixel) derive the statistical bootstrapping of
the success percentile (the same as in bootstrapping) which is represented on
the y-axis. Two contour plots are fairly close to each other.

5 Conclusion

The presented algorithm finds the optimal key search space that allows the
adversary to achieve a predefined probability of success. Unlike prior work, the
algorithm provides a connection between remaining full key security and success
probability even for a single set of side channel observations. It furthermore
is a constructive algorithm, since it not only bounds the remaining key search
space, but also provides an optimized yet simple strategy to search that space.
As a consequence, the algorithm can be used by embedded security evaluators to

16



quantify the resistance of a device to SCA. It can also be used by an adversary
to determine whether the leakage suffices for a successful key recovery attack.

Acknowledgments

This material is based upon work supported by the National Science Foundation
under Grant No. #1261399 and Grant No. #1314770. We would like to thank
François-Xavier Standaert for the helpful discussion. We would also like to thank
the anonymous reviewers for their helpful comments.

References

1. Dpa contest (versions 1 and 2). http://www.dpacontest.org/home/. 1
2. S. Chari, J. Rao, and P. Rohatgi. Template Attacks. In Cryptographic Hardware

and Embedded Systems - CHES 2002. Springer Berlin / Heidelberg, 2003. 12
3. F. Durvaux, F.-X. Standaert, and N. Veyrat-Charvillon. How to Certify the Leak-

age of a Chip? In to appear in the proceedings of Eurocrypt 2014. Springer LNCS,
2014. 12

4. S. Faust, K. Pietrzak, and J. Schipper. Practical Leakage-Resilient Symmetric
Cryptography. In E. Prouff and P. Schaumont, editors, Cryptographic Hardware
and Embedded Systems Ű CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 213–232. Springer Berlin Heidelberg, 2012. 1

5. B. Gierlichs, K. Lemke-Rust, and C. Paar. Templates vs. Stochastic Methods. In
L. Goubin and M. Matsui, editors, Cryptographic Hardware and Embedded Systems
- CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 15–29.
Springer Berlin Heidelberg, 2006. 2

6. P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,
DSS, and other systems. In N. I. Koblitz, editor, Advances in Cryptology —
CRYPTO ’96, volume 1109 of Lecture Notes in Computer Science, pages 104–113.
Springer Verlag, 1996. 1

7. P. C. Kocher. Leak-resistant cryptographic indexed key update (US patent
6539092), 2003. 1

8. P. C. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In CRYPTO ’99:
Proceedings of the 19th Annual International Cryptology Conference on Advances
in Cryptology, pages 388–397, London, UK, 1999. Springer-Verlag. 1

9. F. Macé, F.-X. Standaert, and J.-J. Quisquater. Information Theoretic Evaluation
of Side-Channel Resistant Logic Styles. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems - CHES 2007, Lecture Notes in
Computer Science, pages 427–442. Springer Berlin Heidelberg, 2007. 2

10. S. Mangard, E. Oswald, and T. Popp. Power Analysis Attacks: Revealing the
Secrets of Smartcards. Springer-Verlag, 2007. 2, 12

11. M. Medwed, F.-X. Standaert, and A. Joux. Towards Super-Exponential Side-
Channel Security with Efficient Leakage-Resilient PRFs. In E. Prouff and P. Schau-
mont, editors, Cryptographic Hardware and Embedded Systems — CHES 2012.
Springer Berlin Heidelberg, 2012. 1

12. A. Moradi, M. Kasper, and C. Paar. Black-Box Side-Channel Attacks Highlight the
Importance of Countermeasures. In O. Dunkelman, editor, Topics in Cryptology
– CT-RSA 2012, volume 7178 of Lecture Notes in Computer Science, pages 1–18.
Springer Berlin Heidelberg, 2012. 1

17

http://www.dpacontest.org/home/


13. J. Pliam. The Disparity between Work and Entropy in Cryptology. Cryptology
ePrint Archive, Report 1998/024, 1998. http://eprint.iacr.org/. 3

14. J. Pliam. On the Incomparability of Entropy and Marginal Guesswork in Brute-
Force Attacks. In B. Roy and E. Okamoto, editors, Progress in Cryptology —
INDOCRYPT 2000, volume 1977 of Lecture Notes in Computer Science, pages
67–79. Springer Berlin Heidelberg, 2000. 3

15. B. Poettering. Rijndael Furious. Implementation. http://point-at-infinity.
org/avraes/. 12

16. F. Regazzoni, S. Badel, T. Eisenbarth, J. Großschädl, A. Poschmann, Z. T. Deniz,
M. Macchetti, L. Pozzi, C. Paar, Y. Leblebici, and P. Ienne. A Simulation-
Based Methodology for Evaluating the DPA-Resistance of Cryptographic Func-
tional Units with Application to CMOS and MCML Technologies. In Interna-
tional Symposium on Systems, Architectures, Modeling and Simulation (SAMOS
VII), 2007. 2

17. M. Rivain. On the Exact Success Rate of Side Channel Analysis in the Gaussian
Model. In R. Avanzi, L. Keliher, and F. Sica, editors, Selected Areas in Cryptogra-
phy, volume 5381 of Lecture Notes in Computer Science, pages 165–183. Springer
Berlin Heidelberg, 2009. 2

18. F.-X. Standaert, T. G. Malkin, and M. Yung. A unified framework for the analysis
of side-channel key recovery attacks. Advances in Cryptology — EUROCRYPT
2009, pages 443–461, 2009. 2, 3

19. F.-X. Standaert, O. Pereira, Y. Yu, J.-J. Quisquater, M. Yung, and E. Oswald.
Leakage Resilient Cryptography in Practice. In A.-R. Sadeghi and D. Naccache,
editors, Towards Hardware-Intrinsic Security, Information Security and Cryptog-
raphy, pages 99–134. Springer Berlin Heidelberg, 2010. 1

20. A. Thillard, E. Prouff, and T. Roche. Success through Confidence: Evaluating the
Effectiveness of a Side-Channel Attack. In Cryptographic Hardware and Embedded
Systems - CHES 2013, volume 8086 of Lecture Notes in Computer Science, pages
21–36. Springer Berlin Heidelberg, 2013. 5

21. K. Tiri, M. Akmal, and I. Verbauwhede. A dynamic and differential CMOS logic
with signal independent power consumption to withstand differential power anal-
ysis on smart cards. In Solid-State Circuits Conference, 2002. ESSCIRC 2002.
Proceedings of the 28th European, pages 403 –406, sept. 2002. 2

22. N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F.-X. Standaert. An Optimal
Key Enumeration Algorithm and Its Application to Side-Channel Attacks. In
Selected Areas in Cryptography, volume 7707 of Lecture Notes in Computer Science,
pages 390–406. Springer Berlin Heidelberg, 2013. 2, 4, 9

23. N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert. Security Evaluations be-
yond Computing Power. In T. Johansson and P. Q. Nguyen, editors, Advances
in Cryptology — EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer
Science, pages 126–141. Springer Berlin Heidelberg, 2013. 2, 4

18

http://eprint.iacr.org/
http://point-at-infinity.org/avraes/
http://point-at-infinity.org/avraes/

	Bounded, yet Sufficient? How to Determine Whether Limited Side Channel Information Enables Key Recovery

