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Bayesian Inference for Logistic Models Using
Pólya–Gamma Latent Variables

Nicholas G. POLSON, James G. SCOTT, and Jesse WINDLE

We propose a new data-augmentation strategy for fully Bayesian inference in models with binomial likelihoods. The approach appeals to a
new class of Pólya–Gamma distributions, which are constructed in detail. A variety of examples are presented to show the versatility of the
method, including logistic regression, negative binomial regression, nonlinear mixed-effect models, and spatial models for count data. In
each case, our data-augmentation strategy leads to simple, effective methods for posterior inference that (1) circumvent the need for analytic
approximations, numerical integration, or Metropolis–Hastings; and (2) outperform other known data-augmentation strategies, both in ease
of use and in computational efficiency. All methods, including an efficient sampler for the Pólya–Gamma distribution, are implemented in
the R package BayesLogit. Supplementary materials for this article are available online.

KEY WORDS: Bayesian methods; Data augmentation; Logistic regression; Negative binomial regression; Pólya–Gamma distribution.

1. INTRODUCTION

Bayesian inference for the logistic regression model has long
been recognized as a hard problem, due to the analytically incon-
venient form of the model’s likelihood function. By comparison,
Bayesian inference for the probit model is much easier, owing
to the simple latent-variable method of Albert and Chib (1993)
for posterior sampling.

In the two decades since the work of Albert and Chib (1993)
on the probit model, there have been many attempts to apply the
same missing-data strategy to the logit model (e.g., Holmes and
Held 2006; Frühwirth-Schnatter and Frühwirth 2010; Gramacy
and Polson 2012). The results have been mixed. Certainly, many
of these approaches have been used successfully in applied
work. Yet they all involve data-augmentation algorithms that are
either approximate, or are significantly more complicated than
the Albert/Chib method, as they involve multiple layers of latent
variables. Perhaps as a result, the Bayesian treatment of the logit
model has not seen widespread adoption by nonstatisticians in
the way that, for example, the Bayesian probit model is used
extensively in both political science and market research (e.g.,
Rossi, Allenby, and McCulloch 2005; Jackman 2009). The
lack of a standard computational approach also makes it more
difficult to use the logit link in the kind of complex hierarchical
models that have become routine in Bayesian statistics.

In this article, we present a new data-augmentation algorithm
for Bayesian logistic regression. Although our method involves
a different missing-data mechanism from that of Albert and Chib
(1993), it is nonetheless a direct analog of their construction, in
that it is both exact and simple. Moreover, because our method
works for any binomial likelihood parameterized by log odds, it
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leads to an equally painless Bayesian treatment of the negative-
binomial model for overdispersed count data.

This approach appeals to a new family of Pólya–Gamma
distributions, described briefly here and constructed in detail in
Section 2.

Definition 1. A random variable X has a Pólya–Gamma
distribution with parameters b > 0 and c ∈ R, denoted as
X ∼ PG(b, c), if

X
D= 1

2π2

∞∑
k=1

gk

(k − 1/2)2 + c2/(4π2)
, (1)

where the gk ∼ Ga(b, 1) are independent gamma random vari-
ables, and where

D= indicates equality in distribution.

Our main result (shown in Theorem 1) is that binomial likeli-
hoods parameterized by log-odds can be represented as mixtures
of Gaussians with respect to a Pólya–Gamma distribution. The
fundamental integral identity at the heart of our approach is that,
for b > 0,

(eψ )a

(1 + eψ )b
= 2−beκψ

∫ ∞

0
e−ωψ2/2 p(ω) dω, (2)

where κ = a − b/2 and ω ∼ PG(b, 0). When ψ = xT β is a
linear function of predictors, the integrand is the kernel of a
Gaussian likelihood in β. Moreover, as we will show below,
the implied conditional distribution for ω, given ψ , is also a
Pólya–Gamma distribution. This suggests a simple strategy for
Gibbs sampling across a wide class of binomial models: Gaus-
sian draws for the main parameters, and Pólya–Gamma draws
for a single layer of latent variables.

The success of this strategy depends upon the existence of a
simple, effective way to simulate Pólya–Gamma random vari-
ables. The sum-of-gammas representation in Equation (1) ini-
tially seems daunting, and suggests only a naı̈ve finite approxi-
mation. But we describe a fast, exact Pólya–Gamma simulation
method that avoids the difficulties that can result from truncat-
ing an infinite sum. The method, which is implemented in the
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R package BayesLogit (Windle, Polson, and Scott 2013a), is
an accept/reject sampler based on the alternating-series method
of Devroye (1986). For the basic PG(1, c) case, the sampler is
very efficient: it requires only exponential and inverse-Gaussian
draws, and the probability of accepting a proposed draw is uni-
formly bounded below at 0.99919. The method is also fully
automatic, with no tuning needed to get optimal performance.
It is therefore sufficiently fast and reliable to be used as a black-
box sampling routine in complex hierarchical models involving
the logit link.

Many previous approaches have been proposed for estimat-
ing Bayesian logistic regression models. This includes the
Metropolis–Hastings (MH) method, along with many other
latent-variable schemes that facilitate Gibbs sampling, all de-
scribed below. Thus, a major aim of our article is to demon-
strate the efficiency of the Pólya–Gamma approach versus these
alternatives across a wide range of circumstances. We present
evidence in support of two claims.

1. In simple logit models with abundant data and no hier-
archical structure, the Pólya–Gamma method is a close
second to the independence MH sampler, as long as the
MH proposal distribution is chosen carefully.

2. In virtually all other cases, the Pólya–Gamma method is
most efficient.

The one exception we have encountered to the second claim
is the case of a negative-binomial regression model with many
counts per observation and with no hierarchical structure in
the prior. Here, the effective sample size of the Pólya–Gamma
method remains the best, but its effective sampling rate suf-
fers. As we describe below, this happens because our present
method for sampling PG(n, c) is to sum n independent draws
from PG(1, c); with large counts, this becomes a bottleneck.
In such cases, the method of Frühwirth-Schnatter et al. (2009)
provides a fast approximation, at the cost of introducing a more
complex latent-variable structure.

This caveat notwithstanding, the Pólya–Gamma scheme of-
fers real advantages, both in speed and simplicity, across a wide
variety of structured Bayesian models for binary and count data.
In general, the more complex the model, and the more time
that one must spend sampling its main parameters, the larger
will be the efficiency advantage of the new method. The differ-
ence is especially large for the Gaussian-process spatial models
we consider below, which require expensive matrix operations.
We have also made progress in improving the speed of the
Pólya–Gamma sampler for large shape parameters, beyond the
method described in Section 4. These modifications lead to bet-
ter performance in negative-binomial models with large counts.
They are detailed in Windle, Polson, and Scott (2013b) and
have been incorporated into the latest version of our R package
(Windle, Polson, and Scott 2013a).

Furthermore, in a recent article based on an early technical re-
port of our method, Choi and Hobert (2013) have proven that the
Pólya–Gamma Gibbs sampler for Bayesian logistic regression
is uniformly ergodic. This result has important practical conse-
quences; most notably, it guarantees the existence of a central
limit theorem for Monte Carlo averages of posterior draws. We
are aware of no similar result for any other MCMC-based ap-
proach to the Bayesian logit model. Together with the numerical

evidence we present here, this provides a strong reason to favor
the routine use of the Pólya–Gamma method.

The article proceeds as follows. The Pólya–Gamma distri-
bution is constructed in Section 2, and used to derive a data-
augmentation scheme for binomial likelihoods in Section 3. Sec-
tion 4 describes a method for simulating from the Pólya–Gamma
distribution, which we have implemented as a stand-alone sam-
pler in the BayesLogitR package. Section 5 presents the results
of an extensive benchmarking study comparing the efficiency
of our method to other data-augmentation schemes. Section 6
concludes with a discussion of some open issues related to our
proposal. Many further details of the sampling algorithm and
our empirical study of its efficiency are deferred to a technical
supplement.

2. THE PÓLYA–GAMMA DISTRIBUTION

2.1 The Case PG(b, 0)

The key step in our approach is the construction of the
Pólya–Gamma distribution. We now describe this new fam-
ily, deferring our method for simulating PG random variates to
Section 4.

The Pólya–Gamma family of distributions, denoted as
PG(b, c), is a subset of the class of infinite convolutions of
gamma distributions. We first focus on the PG(1, 0) case, which
is a carefully chosen element of the class of infinite convolutions
of exponentials, also known as Pólya distributions (Barndorff-
Nielsen, Kent, and Sorensen 1982). The PG(1, 0) distribution
has Laplace transform cosh−1(

√
t/2). Using this as a starting

point, one may define the random variable ω ∼ PG(b, 0), b > 0,
as the infinite convolution of gamma distributions (hence the
name Pólya–Gamma) that has Laplace transform

E{exp(−ωt)} =
∞∏

k=1

(
1 + t

2π2(k − 1/2)2

)−b

= 1

coshb(
√

t/2)
. (3)

The last equality is a consequence of the Weierstrass factoriza-
tion theorem. By inverting the Laplace transform, one finds that
if ω ∼ PG(b, 0), then it is equal in distribution to an infinite sum
of gammas:

ω
D= 1

2π2

∞∑
k=1

gk

(k − 1/2)2
,

where the gk ∼ Ga(b, 1) are mutually independent.
The PG(b, 0) class of distributions is closely related to a sub-

set of distributions that are surveyed by Biane, Pitman, and Yor
(2001). This family of distributions, which we denote by J ∗(b),
b > 0, has close connections with the Jacobi Theta and Riemann
Zeta functions, and with Brownian excursions. Its Laplace trans-
form is

E{e−tJ ∗(b)} = cosh−b(
√

2t), (4)

implying that PG(b, 0)
D= J ∗(b)/4.
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2.2 The General PG(b, c) Class

The general PG(b, c) class arises through an exponential tilt-
ing of the PG(b, 0) density, much in the same way that a Gaus-
sian likelihood combines with a Gamma prior for a precision.
Specifically, a PG(b, c) random variable has the probability den-
sity function

p(x | b, c) = exp
(− c2

2 x
)
p(x | b, 0)

E
{

exp x
(− c2

2 ω
)} , (5)

where p(x | b, 0) is the density of an ω ∼ PG(b, 0) random vari-
able. The expectation in the denominator is taken with respect
to the PG(b, 0) distribution; it is thus cosh−b(c/2) by Equation
(3), ensuring that p(x | b, c) is a valid density.

The Laplace transform of a ω ∼ PG(b, c) distribution may be
calculated by appealing to the Weierstrass factorization theorem
again:

E{exp(−ωt)}
= coshb

(
c
2

)
coshb

(√
c2/2+t

2

) (6)

=
∞∏

k=1

⎛
⎝1 + c2/2

2(k−1/2)2π2

1 + c2/2+t

2(k−1/2)2π2

⎞
⎠

b

=
∞∏

k=1

(
1 + d−1

k t
)−b

, where dk = 2

(
k − 1

2

)2

π2 + c2/2.

Each term in the product is recognizable as the Laplace
transform of a gamma distribution. We can therefore write a
ω ∼ PG(b, c) as an infinite convolution of gamma distributions,

ω
D=

∞∑
k=1

Ga(b, 1)

dk

= 1

2π2

∞∑
k=1

Ga(b, 1)(
k − 1

2

)2 + c2/(4π2)
,

which is the form given in Definition 1.

2.3 Further Properties

The density of a Pólya–Gamma random variable can be ex-
pressed as an alternating-sign sum of inverse-Gaussian densi-
ties. This fact plays a crucial role in our method for simulating
Pólya–Gamma draws. From the characterization of J ∗(b) den-
sity given by Biane, Pitman, and Yor (2001), we know that the
PG(b, 0) distribution has density

f (x | b, 0) = 2b−1

�(b)

×
∞∑

n=0

(−1)n
�(n + b)

�(n + 1)

(2n + b)√
2πx3

e− (2n+b)2

8x .

The density of PG(b, z) distribution is then computed by an
exponential tilt and a renormalization:

f (x | b, c) = {coshb(c/2)} 2b−1

�(b)

×
∞∑

n=0

(−1)n
�(n + b)

�(n + 1)

(2n + b)√
2πx3

e− (2n+b)2

8x
− c2

2 x.

Note that the normalizing constant is known directly from the
Laplace transform of a PG(b, 0) random variable.

A further useful fact is that all finite moments of a
Pólya–Gamma random variable are available in a closed form.
In particular, the expectation may be calculated directly. This
allows the Pólya–Gamma scheme to be used in EM algorithms,
where the latent ω’s will form a set of complete-data sufficient
statistics for the main parameter. We arrive at this result by
appealing to the Laplace transform of ω ∼ PG(b, c). Differen-
tiating Equation (6) with respect to t, negating, and evaluating
at zero yields

E(ω) = b

2c
tanh(c/2) = b

2c

(
ec − 1

1 + ec

)
.

Finally, the Pólya–Gamma class is closed under convolution
for random variates with the same scale (tilting) parameter.
If ω1 ∼ PG(b1, z) and ω2 ∼ PG(b2, z) are independent, then
ω1 + ω2 ∼ PG(b1 + b2, z). This follows from the Laplace trans-
form. We will employ this property later when constructing a
Pólya–Gamma sampler.

3. THE DATA-AUGMENTATION STRATEGY

3.1 Main Result

The Pólya–Gamma family has been carefully constructed
to yield a simple Gibbs sampler for the Bayesian logistic-
regression model. The two differences from the Albert and Chib
(1993) method for probit regression are that the posterior dis-
tribution is a scale mixture, rather than location mixture, of
Gaussians; and that Albert and Chib’s truncated normals are
replaced by Pólya–Gamma latent variables.

To fix notation: let yi be the number of successes, ni the num-
ber of trials, and xi = (xi1, . . . , xip) the vector of regressors for
observation i ∈ {1, . . . , N}. Let yi ∼ Binom(ni, 1/{1 + e−ψi }),
where ψi = xT

i β are the log odds of success. Finally, let β have
a Gaussian prior, β ∼ N(b, B). To sample from the posterior
distribution using the Pólya–Gamma method, simply iterate
two steps:

(ωi | β) ∼ PG
(
ni, x

T
i β
)

(β | y, ω) ∼ N (mω, Vω) ,

where

Vω = (XT �X + B−1)−1

mω = Vω(XT κ + B−1b),

where κ = (y1 − n1/2, . . . , yN − nN/2), and � is the diagonal
matrix of ωi’s.

We now derive this sampler, beginning with a careful
statement and proof of the integral identity mentioned in
Section 1.

Theorem 1. Let p(ω) denote the density of the random vari-
able ω ∼ PG(b, 0), b > 0. Then the following integral identity
holds for all a ∈ R:

(eψ )a

(1 + eψ )b
= 2−beκψ

∫ ∞

0
e−ωψ2/2 p(ω) dω, (7)

where κ = a − b/2.
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Moreover, the conditional distribution

p(ω | ψ) = e−ωψ2/2 p(ω)∫∞
0 e−ωψ2/2 p(ω) dω

,

which arises in treating the integrand in Equation (7) as an un-
normalized joint density in (ψ,ω), is also in the Pólya–Gamma
class: (ω | ψ) ∼ PG(b,ψ).

Proof. Appealing to Equation (3), we may write the left-hand
side of Equation (7) as

(eψ )a

(1 + eψ )b
= 2−b exp{κψ}

coshb(ψ/2)

= 2−beκψ E{exp(−ωψ2/2)},
where the expectation is taken with respect to ω ∼ PG(b, 0) and
where κ = a − b/2.

Turn now to the conditional distribution

p(ω | ψ) = e−ωψ2/2 p(ω)∫∞
0 e−ωψ2/2 p(ω) dω

,

where p(ω) is the density of the prior, PG(b, 0). This is of the
same form as Equation (5), with ψ = c. Therefore (ω | ψ) ∼
PG(b,ψ). �

To derive our Gibbs sampler, we appeal to Theorem 1 and
write the likelihood contribution of observation i as

Li(β) =
{
exp

(
xT

i β
)}yi

1 + exp
(
xT

i β
)

∝ exp
(
κix

T
i β
) ∫ ∞

0
exp

{−ωi

(
xT

i β
)2

/2
}

p(ωi | ni, 0),

where κi = yi − ni/2, and where p(ωi | ni, 0) is the density of
a Pólya–Gamma random variable with parameters (ni, 0).

Combining the terms from all n data points gives the fol-
lowing expression for the conditional posterior of β, given
ω = (ω1, . . . , ωN ):

p(β | ω, y) ∝ p(β)
N∏

i=1

Li(β | ωi)

= p(β)
N∏

i=1

exp
{
κix

T
i β − ωi

(
xT

i β
)2

/2
}

∝ p(β)
N∏

i=1

exp
{ωi

2

(
xT

i β − κi/ωi

)2}

∝ p(β) exp

{
−1

2
(z − Xβ)T �(z − Xβ)

}
,

where z = (κ1/ω1, . . . , κn/ωN ), and where � =
diag(ω1, . . . , ωN ). This is a conditionally Gaussian likeli-
hood in β, with working responses z, design matrix X, and
diagonal covariance matrix �−1. Since the prior p(β) is
Gaussian, a simple linear-model calculation leads to the Gibbs
sampler defined above.

3.2 Existing Data-Augmentation Schemes

A comparison with the methods of Holmes and Held (2006)
and Frühwirth-Schnatter and Frühwirth (2010) clarifies how
the Pólya–Gamma method differs from previous attempts at
data augmentation. Both of these methods attempt to replicate

the missing-data mechanism of Albert and Chib (1993), where
the outcomes yi are assumed to be thresholded versions of an
underlying continuous quantity zi . For simplicity, we assume
that ni = 1 for all observations, and that yi is either 0 or 1. Let

yi =
{

1, zi ≥ 0

0, zi < 0

zi = xT
i β + εi, εi ∼ Lo(1), (8)

where εi ∼ Lo(1) has a standard logistic distribution. Upon
marginalizing over the zi , often called the latent utilities, the
original binomial likelihood is recovered.

Although Equation (8) would initially seem to be a direct
parallel with Albert and Chib (1993), it does not lead to an easy
method for sampling from the posterior distribution of β. This
creates additional complications compared to the probit case.
The standard approach has been to add another layer of auxiliary
variables to handle the logistic error model on the latent-utility
scale. One strategy is to represent the logistic distribution as a
normal-scale mixture (Holmes and Held 2006):

(εi | φi) ∼ N(0, φi)

φi = (2λi)
2 , λi ∼ KS(1),

where λi has a Kolmogorov–Smirnov distribution (Andrews and
Mallows 1974). Alternatively, one may approximate the logistic
error term as a discrete mixture of normals (Frühwirth-Schnatter
and Frühwirth 2010):

(εi | φi) ∼ N(0, φi)

φi ∼
K∑

k=1

wkδφ(k) ,

where δφ indicates a Dirac measure at φ. The weights wk and
the points φ(k) in the discrete mixture are fixed for a given
choice of K so that the Kullback–Leibler divergence from the
true distribution of the random utilities is minimized. Frühwirth-
Schnatter and Frühwirth (2010) found that the choice of K = 10
leads to a good approximation, and list the optimal weights and
variances for this choice.

In both cases, posterior sampling can be done in two blocks,
sampling the complete conditional of β in one block and sam-
pling the joint complete conditional of both layers of auxiliary
variables in the second block. The discrete mixture of normals
is an approximation, but it outperforms the scale mixture of
normals in terms of effective sampling rate, as it is much faster.

One may also arrive at the hierarchy above by manipulating
the random utility derivation of McFadden (1974); this involves
the difference of random utilities, or “dRUM,” using the term
of Frühwirth-Schnatter and Frühwirth (2010). The dRUM rep-
resentation is superior to the random utility approach explored
in Frühwirth-Schnatter and Frühwirth (2007). Further work by
Fussl, Frühwirth-Schnatter, and Frühwirth (2013) improves the
approach for binomial logistic models. In this extension, one
must use a table of different weights and variances representing
different normal mixtures, to approximate a finite collection of
type-III logistic distributions, and interpolate within this table
to approximate the entire family.

Both Albert and Chib (1993) and O’Brien and Dunson (2004)
suggested another approximation: namely, the use of a Student-t
link function as a close substitute for the logistic link. But this
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β

yiiφi

i = 1, . . . , n

β

yi

i = 1, . . . , n

ωi

Figure 1. Directed acyclic graphs depicting two latent-variable con-
structions for the logistic-regression model: the difference of random-
utility model of Holmes and Held (2006) and Frühwirth-Schnatter
and Frühwirth (2010), on the left; versus our direct data-augmentation
scheme, on the right.

also introduces a second layer of latent variables, in that the
Student-t error model for zi is represented as a scale mixture of
normals.

Our data-augmentation scheme differs from each of these
approaches in several ways. First, it does not appeal directly
to the random-utility interpretation of the logit model. Instead,
it represents the logistic CDF as a mixture with respect to an
infinite convolution of gammas. Second, the method is exact,
in the sense of making draws from the correct joint posterior
distribution, rather than an approximation to the posterior that
arises out of an approximation to the link function. Third, like
the Albert and Chib (1993) method, it requires only a single
layer of latent variables (see Figure 1).

A similar approach to ours is that of Gramacy and Polson
(2012), who proposed a latent-variable representation of a
powered-up version of the logit likelihood (see Polson and
Scott 2013). This representation is useful for obtaining clas-
sical penalized-likelihood estimates via simulation, but for the
ordinary logit model it leads to an improper mixing distribution
for the latent variable. This requires modifications of the ba-
sic approach that make simulation difficult in the general logit
case. As our experiments show, the method does not seem to
be competitive on speed grounds with the Pólya–Gamma rep-
resentation, which results in a proper mixing distribution for all
common choices of ai, bi in Equation (2).

For negative-binomial regression, Frühwirth-Schnatter et al.
(2009) employed the discrete-mixture/table-interpolation ap-
proach, like that used by Fussl, Frühwirth-Schnatter, and
Frühwirth (2013), to produce a tractable data augmentation
scheme. In some instances, the Pólya–Gamma approach out-
performs this method; in others, it does not. The reasons for this

discrepancy can be explained by examining the inner workings
of our Pólya–Gamma sampler, discussed in Section 4.

3.3 Mixed Model Example

We have introduced the Pólya–Gamma method in the context
of a binary logit model. We do this with the understanding that,
when data are abundant, the MH algorithm with independent
proposals will be efficient, as asymptotic theory suggests that a
normal approximation to the posterior distribution will become
very accurate as data accumulate. This is well understood among
Bayesian practitioners (e.g., Carlin 1992; Gelman et al. 2004).

But the real advantage of data augmentation, and the
Pólya–Gamma technique in particular, is that it becomes easy
to construct and fit more complicated models. For instance, the
Pólya–Gamma method trivially accommodates mixed models,
factor models, and models with a spatial or dynamic structure.
For most problems in this class, good MH samplers are difficult
to design, and at the very least will require ad hoc tuning to yield
good performance.

Several relevant examples are considered in Section 5. But as
an initial illustration of the point, we fit a binomial logistic mixed
model using the data on contraceptive use among Bangladeshi
women provided by the R package mlmRev (Bates, Maechler,
and Bolker 2011). The data come from a Bangladeshi survey
whose predictors include a woman’s age, the number of children
at the time of the survey, whether the woman lives in an urban or
rural area, and a more specific geographic identifier based upon
the district in which the woman resides. Some districts have few
observations and district 54 has no observations; thus, a mixed
model is necessary if one wants to include this effect. The re-
sponse identifies contraceptive use. We fit the mixed model

yij ∼ Binom(1, pij ), pij = eψij

1 + eψij
,

ψij = m + δj + x ′
ij β,

δj ∼ N (0, 1/φ),

m ∼ N (0, κ2/φ),

where i and j correspond to the ith observation from the jth
district. The fixed effect β is given an N (0, 100I ) prior, while
the precision parameter φ is given Ga(1, 1) prior. We take
κ → ∞ to recover an improper prior for the global intercept
m. Figure 2 shows the box plots of the posterior draws of the
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Figure 2. Marginal posterior distribution of random intercepts for each district found in a Bangladeshi contraception survey. For 10,000
samples after 2000 burn-in, median ESS = 8168 and median ESR = 59.88 for the PG method. Gray/white bars: 90%/50% posterior credible
intervals. Black dots: posterior means.
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random intercepts m + δj . If one does not shrink these random
intercepts to a global mean using a mixed model, then several
take on unrealistic values due to the unbalanced design.

We emphasize that there are many ways to model these data,
and that we do not intend our analysis to be taken as definitive.
It is merely a proof of concept, showing how various aspects
of Bayesian hierarchical modeling—in this case, models with
both fixed and random effects—can be combined routinely with
binomial likelihoods using the Pólya–Gamma scheme. Together
these changes require just a few lines of code and a few extra sec-
onds of runtime compared to the nonhierarchical logit model.
A posterior draw of 2000 samples for this dataset takes 26.1
seconds for a binomial logistic regression, versus 27.3 seconds
for a binomial logistic mixed model. As seen in the negative
binomial examples below, one may also painlessly incorporate
a more complex prior structure using the Pólya–Gamma tech-
nique. For instance, if given information about the geographic
location of each district, one could place a spatial process prior
upon the random offsets {δj }.

4. SIMULATING PÓLYA–GAMMA RANDOM
VARIABLES

4.1 The PG(1,z) Sampler

All our developments thus far require an efficient method for
sampling Pólya–Gamma random variates. In this section, we
derive such a method, which is implemented in the R pack-
age BayesLogit. We focus chiefly on simulating PG(1,z) effi-
ciently, as this is most relevant to the binary logit model.

First, observe that one may sample Pólya–Gamma random
variables naı̈vely (and approximately) using the sum-of-gammas
representation in Equation (1). But this is slow and involves the
potentially dangerous step of truncating an infinite sum.

We therefore construct an alternate, exact method by extend-
ing the approach of Devroye (2009) for simulating J ∗(1) from
Equation (4). The distribution J ∗(1) is related to the Jacobi theta
function, so we call J ∗(1) the Jacobi distribution. One may de-
fine an exponentially tilted Jacobi distribution J ∗(1, z) via the
density

f (x | z) = cosh(z) e−xz2/2 f (x), (9)

where f (x) is the density of J ∗(1). The PG(1, z) distribution is
related to J ∗(1, z) through the rescaling

PG(1, z) = 1

4
J ∗(1, z/2). (10)

Devroye (2009) developed an efficient J ∗(1, 0) sampler. Fol-
lowing this work, we develop an efficient sampler for an ex-
ponentially tilted J ∗ random variate. In both cases, the density
of interest can be written as an infinite, alternating sum that is
amenable to the series method described in chap. IV.5 of De-
vroye (1986). Recall that a random variable with density f may
be sampled using the accept/reject algorithm by (1) propos-
ing X from a density g; (2) drawing U ∼ U(0, cg(X)) where
‖f/g‖∞ ≤ c; and (3) accepting X if U ≤ f (X) and rejecting
X otherwise. When f (x) =∑∞

n=0(−1)nan(x) and the coeffi-
cients an(x) are decreasing for all n ∈ N0, for fixed x in the
support of f , then the partial sums, Sn(x) =∑n

i=0(−1)iai(x),

satisfy

S0(x) > S2(x) > · · · > f (x) > · · · > S3(x) > S1(x). (11)

In that case, step (3) above is equivalent to accepting X if U ≤
Si(X) for some odd i, and rejecting X if U > Si(X) for some even
i. Moreover, the partial sums Si(X) can be calculated iteratively.
Below we show that for the J ∗(1, z) distribution the algorithm
will accept with high probability upon checking U ≤ S1(X).

The Jacobi density has two alternating-sum representations,∑∞
n=0(−1)naL

n (x) and
∑∞

n=0(−1)naR
i (x), neither of which sat-

isfy Equation (11) for all x in the support of f . However, each
satisfies Equation (11) on an interval. These two intervals, re-
spectively, denoted as IL and IR , satisfy IL ∪ IR = (0,∞) and
IL ∩ IR �= �. Thus, one may pick t ∈ IL ∩ IR and define the
piecewise coefficients

an(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π (n + 1/2)

(
2

πx

)3/2

exp

{
−2(n + 1/2)2

x

}
,

0 < x ≤ t, (12)

π (n + 1/2) exp

{
− (n + 1/2)2π2

2
x

}
,

x > t, (13)

so that f (x) =∑∞
n=0(−1)nan(x) satisfies the partial sum crite-

rion (11) for x > 0. Devroye shows that the best choice of t is
near 0.64.

Employing Equation (9), we now see that the J ∗(1, z) den-
sity can be written as an infinite, alternating sum f (x|z) =∑∞

n=0(−1)nan(x|z), where

an(x|z) = cosh(z) exp

{
−z2x

2

}
an(x).

This satisfies Equation (11), as an+1(x|z)/an(x|z) = an+1(x)/
an(x). Since a0(x|z) ≥ f (x|z), the first term of the series pro-
vides a natural proposal:

c(z) g(x|z)

= π

2
cosh(z)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
2

πx

)3/2

exp

{
−z2x

2
− 1

2x

}
, 0 < x ≤ t,

exp

{
−
(

z2

2
+ π2

8

)
x

}
, x > t.

(14)

Examining these two kernels, one finds that X ∼ g(x|z) may be
sampled from a mixture of an inverse-Gaussian and an expo-
nential:

X ∼
{

IG(|z|−1, 1)I(0,t] with prob. p/(p + q)

Ex(−z2/2 + π2/8)I(t,∞) with prob. q/(p + q),

where p(z) = ∫ t

0 c(z) g(x|z)dx and q(z) = ∫∞
t

c(z) g(x|z)dx.
Note that we are implicitly suppressing the dependence of
p, q, c, and g upon t.

With this proposal in hand, sampling J ∗(1, z) proceeds as
follows:

1. Generate a proposal X ∼ g(x|z).
2. Generate U ∼ U(0, c(z)g(X|z)).
3. Iteratively calculate Sn(X|z), starting at S1(X|z), until U ≤

Sn(X|z) for an odd n or until U > Sn(X|z) for an even n.
4. Accept X if n is odd; return to step 1 if n is even.
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To sample Y ∼ PG(1, z), draw X ∼ J ∗(1, z/2) and then let Y =
X/4. The details of the implementation, along with pseudocode,
can be found in the technical supplement.

4.2 Analysis of Acceptance Rate

This J ∗(1, z) sampler is very efficient. The parameter c =
c(z, t) found in Equation (13) characterizes the average num-
ber of proposals we expect to make before accepting. Devroye
shows that in the case of z = 0, one can pick t so that c(0, t) is
near unity. We extend this result to nonzero tilting parameters
and calculate that, on average, the J ∗(1, z) sampler rejects no
more than 9 out of every 10,000 draws, regardless of z.

Proposition 1. Define

p(z, t) =
∫ t

0

π

2
cosh(z) exp

{
−z2x

2

}
aL

0 (x)dx,

q(z, t) =
∫ ∞

t

π

2
cosh(z) exp

{
−z2x

2

}
aR

0 (x)dx.

The following facts about the Pólya–Gamma rejection sampler
hold.

1. The best truncation point t∗ is independent of z ≥ 0.
2. For a fixed truncation point t, p(z, t) and q(z, t) are

continuous, p(z, t) decreases to zero as z diverges, and
q(z, t) converges to 1 as z diverges. Thus, c(z, t) =
p(z, t) + q(z, t) is continuous and converges to 1 as z
diverges.

3. For fixed t, the average probability of accepting a draw,
1/c(z, t), is bounded below for all z. For t∗, this bound to
five digits is 0.99919, which is attained at z � 1.378.

Proof. We consider each point in turn. Throughout, t is as-
sumed to be in the interval of valid truncation points, IL ∩ IR .

1. We need to show that for fixed z, c(z, t) = p(z, t) + q(z, t)
has a maximum in t that is independent of z. For fixed
z ≥ 0, p(z, t) and q(z, t) are both differentiable in t. Thus,
any extrema of c will occur on the boundary of the interval
IL ∩ IR , or at the critical points for which ∂c

∂t
= 0; that is,

t ∈ IL ∩ IR , for which

cosh(z) exp

{
−z2

2
t

} [
aL

0 (t) − aR
0 (t)

] = 0.

The exponential term is never zero, so an interior critical
point must satisfy aL

0 (t) − aR
0 (t) = 0, which is indepen-

dent of z. Devroye shows there is one such critical point,
t∗ � 0.64, and that it corresponds to a maximum.

2. Both p and q are integrals of recognizable kernels. Rewrit-
ing the expressions in terms of the corresponding densities
and integrating yields

p(z, t) = cosh(z)
π

2

1

y(z)
exp{−y(z)t},

y(z) = z2

2
+ π2

8
,

and

q(z, t) = (1 + e−2z)�IG(t |1/z, 1),

where �IG is the cumulative distribution function of an
IG(1/z, 1) distribution.

One can see that p(z, t) is eventually decreasing in z for
fixed t by noting that the sign of ∂p

∂z
is determined by

tanh(z) − z
z2

2 + π2

8

− zt,

which is eventually negative. (In fact, for the t∗ calculated
above it appears to be negative for all z ≥ 0, which we
do not prove here.) Further, p(z, t) is continuous in z and
converges to 0 as z diverges.

To see that q(z, t) converges to 1, consider a Brow-
nian motion (Ws) defined on the probability space
(�,F , P ) and the subsequent Brownian motion with
drift Xz

s = zs + Ws . The stopping time T z = inf{s >

0|Xz
s ≥ 1} is distributed as IG(1/z, 1) and P (T z < t) =

P (maxs∈[0,t] X
z
s ≥ 1).

Hence P (T z < t) is increasing and limz→∞ P (T z <

t) = 1, ensuring that q(z, t) ∝ (1 + e−2z)P (T z < t) con-
verges to 1 as z → ∞ as well. Continuity follows
by considering the cumulative distribution P (T z < t) =
�{(zt − 1)/

√
t} − exp(2zt)�{(−1 − zt)/

√
t}, which is a

composition of continuous functions in z.
By the continuity and tail behavior of p and q, it follows

that c(z, t) = p(z, t) + q(z, t), for fixed t, is continuous
for all z and converges to 1 as z diverges. Further c(z, t) ≥
1 since the target density and proposal density satisfy
f (x|z) ≤ c(z, t)g(x|z) for all x ≥ 0. Thus, c takes on its
maximum over z.

3. Since, for each t, c(z, t) is bounded above in z, we know
that 1/c(z, t) is bounded below above zero. For t∗, we
numerically calculate that 1/c(z, t∗) attains its minimum
0.9991977 at z � 1.378; thus, 1/c(z, t∗) > 0.99919 sug-
gesting that no more than 9 of every 10,000 draws are
rejected on average.

�

Since t∗ is the best truncation point regardless of z, we will
assume that the truncation point has been fixed at t∗ and suppress
it from the notation.

4.3 Analysis of Tail Probabilities

Proposition 1 tells us that the sampler rarely rejects a proposal.
One possible worry, however, is that the algorithm might calcu-
late many terms in the sum before deciding to accept or reject,
and that the sampler would be slow despite rarely rejecting.

Happily, this is not the case, as we now prove. Suppose one
samples X ∼ J ∗(1, z). Let N denote the total number of pro-
posals made before accepting, and let Ln be the number of
partial sums Si (i = 1, . . . , Ln) that are calculated before decid-
ing to accept or reject proposal n ≤ N . A variant of Theorem
5.1 from Devroye (1986) employs Wald’s equation to show that
that E[

∑N
n=1 Ln] =∑∞

i=0

∫∞
0 ai(x|z)dx. For the worst enclos-

ing envelope, z � 1.378, E[N ] = 1.0016; that is, on average,
one rarely calculates anything beyond S1 of the first proposal.
A slight alteration of this theorem gives a more precise sense of
how many terms in the partial sum must be calculated.

Proposition 2. When sampling X ∼ J ∗(1, z), the probability
of deciding to accept or reject upon checking the nth partial sum
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Sn, n ≥ 1, is

1

c(z)

∫ ∞

0
{an−1(x|z) − an(x|z)} dx.

Proof. Let L denote the number of partial sums that are cal-
culated before accepting or rejecting the proposal. That is, a
proposal X is generated; U is drawn from U(0, a0(X|z)); and L
is the smallest natural number n ∈ N for which U ≤ Sn if n is
odd or U > Sn if n is even, where Sn denotes Sn(X|z). But since
L is the smallest n for which this holds, SL−2 < U ≤ SL when L
is odd and SL < U ≤ SL−2 when L is even. Thus, the algorithm
accepts or rejects if and only if U ∈ KL(X|z), where

Kn(x|z) =
{

(Sn−2(x|z), Sn(x|z)], odd n

(Sn(x|z), Sn−2(x|z)], even n.

In either case, |Kn(x|z)| = an−1(x|z) − an(x|z). Thus,

P (L = n|X = x) = an−1(x|z) − an(x|z)

a0(x|z)
.

Marginalizing over x yields

P (L = n) = 1

c(z)

∫ ∞

0
{an−1(x|z) − an(x|z)}dx.

�

Since each coefficient an is the piecewise composition of
an inverse Gaussian kernel and an exponential kernel, these
integrals may be evaluated. In particular,

an(x|z) = cosh(z)

⎧⎪⎨
⎪⎩

2e−(2n+1)zpIG(x|μn(z), λn), x < t

π

(
n + 1

2

)
1

yn(z)
pE (x|yn(z)), x ≥ t,

where μn(z) = 2n+1
z

, λn = (2n + 1)2, yn(z) = 0.5(z2 + (n +
1/2)2π2), and pIG and pE are the corresponding densities. The
table below shows the first several probabilities for the worst-
case envelope, z � 1.378. Clearly P (L > n) decays rapidly
with n.

n 1 2 3 4

P (L > n) 8.023 × 10−4 1.728 × 10−9 8.213 × 10−18 8.066 × 10−29

Together with Proposition 2, this provides a strong guarantee of
the efficiency of the PG(1,z) sampler.

4.4 The General PG(b, z) Case

To sample from the entire family of PG(b, z) distributions,
we exploit the additivity of the Pólya–Gamma class. In partic-
ular, when b ∈ N, one may sample PG(b, z) by taking b iid
draws from PG(1, z) and summing them. In binomial logistic
regression, one will always sample PG(b, z) using integral b.
This will also be the case in negative-binomial regression if one
chooses an integer overdispersion parameter. In the technical
supplement, we discuss the case of nonintegral b.

The runtime of the latent-variable sampling step is therefore
roughly linear in the number of total counts in the dataset. For
example, to sample 1 million Pólya–Gamma(1,1) random vari-
ables took 0.70 seconds on a dual-core Apple laptop, versus
0.17 seconds for the same number of Gamma random variables.

By contrast, to sample 1 million PG(10,1) random variables re-
quired 6.43 seconds, and to sample 1 million PG(100,1) random
variables required 60.0 seconds.

We have had some initial success in developing a faster
method to simulate from the PG(n,z) distribution that does not
require summing together n PG(1,z) draws, and that works for
noninteger values of n. This is an active subject of research,
though somewhat beyond the scope of the present article, where
we use the sum-of-PG(1,z)’s method on all our benchmark ex-
amples. A full report on the alternative simulation method for
PG(n,z) may be found in Windle, Polson, and Scott (2013b).

5. EXPERIMENTS

We benchmarked the Pólya–Gamma method against several
alternatives for logit and negative-binomial models. Our purpose
is to summarize the results presented in detail in our online
technical supplement, to which we refer to the interested reader.

Our primary metrics of comparison are the effective sample
size and the effective sampling rate, defined as the effective
sample size per second of runtime. The effective sampling rate
quantifies how rapidly a Markov-chain sampler can produce
independent draws from the posterior distribution. Following
Holmes and Held (2006), the effective sample size (ESS) for
the ith parameter in the model is

ESSi = M

/⎧⎨
⎩1 + 2

k∑
j=1

ρi(j )

⎫⎬
⎭ ,

where M is the number of post-burn-in samples, and ρi(j ) is
the jth autocorrelation of the chain corresponding to βi . We
use the coda package (Plummer et al. 2006), which fits an AR
model to approximate the spectral density at zero, to estimate
each ESSi . All of the benchmarks are generated using R so that
timings are comparable. Some R code makes external calls to
C. In particular, the Pólya–Gamma method calls a C routine to
sample the Pólya–Gamma random variates, just as R routines for
sampling common distributions use externally compiled code.
Here, we report the median effective sample size across all
parameters in the model. Minimum and maximum effective
sample sizes are reported in the technical supplement.

Our numerical experiments support several conclusions.

In binary logit models. First, the Pólya–Gamma is more effi-
cient than all previously proposed data-augmentation schemes.
This is true both in terms of effective sample size and effec-
tive sampling rate. Table 1 summarizes the evidence: across
6 real and 2 simulated datasets, the Pólya–Gamma method
was always more efficient than the next-best data-augmentation
scheme (typically by a factor of 200%–500%). This in-
cludes the approximate random-utility methods of O’Brien and
Dunson (2004) and Frühwirth-Schnatter and Frühwirth (2010),
and the exact method of Gramacy and Polson (2012). Frühwirth-
Schnatter and Frühwirth (2010) find that their own method beats
several other competitors, including the method of Holmes and
Held (2006). We find this as well and omit these timings from
our comparison. Further details can be found in Section 3 of the
technical supplement.

Second, the Pólya–Gamma method always had a higher ef-
fective sample size than the two default Metropolis samplers
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Table 1. Summary of experiments on real and simulated data for binary logistic regression

Dataset

Nodal Diab. Heart AC GC1 GC2 Sim1 Sim2

ESS
Pólya–Gamma 4860 5445 3527 3840 5893 5748 7692 2612
Best RU-DA 1645 2071 621 1044 2227 2153 3031 574
Best Metropolis 3609 5245 1076 415 3340 1050 4115 1388

ESR
Pólya–Gamma 1632 964 634 300 383 258 2010 300
Best RU-DA 887 382 187 69 129 85 1042 59
Best Metropolis 2795 2524 544 122 933 223 2862 537

NOTE: ESS, the median effective sample size for an MCMC run of 10,000 samples; ESR, the median effective sample rate, or median ESS divided by the runtime of the sampler in
seconds; AC, Australian credit dataset; GC1 and GC2, partial and full versions of the German credit dataset; Sim1 and Sim2, simulated data with orthogonal and correlated predictors,
respectively; Best RU-DA, the result of the best random-utility data-augmentation algorithm for that dataset. Best Metropolis: the result of the Metropolis algorithm with the most efficient
proposal distribution among those tested. See the technical supplement for full details.

we tried. The first was a Gaussian proposal using Laplace’s
approximation. The second was a multivariate t6 proposal
using Laplace’s approximation to provide the centering and
scale-matrix parameters, recommended by Rossi, Allenby, and
McCulloch (2005) and implemented in the R package bayesm
(Rossi 2012).

On five of the eight datasets, the best Metropolis algorithm
did have a higher effective sampling rate than the Pólya–Gamma
method, due to the difference in run times. But this advantage
depends crucially on the proposal distribution, where even small
perturbations can lead to surprisingly large declines in perfor-
mance. For example, on the Australian credit dataset (labeled
AC in the table), the Gaussian proposal led to a median effec-
tive sampling rate of 122 samples per second. The very similar
multivariate t6 proposal led to far more rejected proposals and
gave an effective sampling rate of only 2.6 samples per second.
Diagnosing such differences for a specific problem may cost the
user more time than is saved by a slightly faster sampler.

Finally, the Pólya–Gamma method truly shines when the
model has a complex prior structure. In general, it is difficult
to design good Metropolis samplers for these problems. For ex-
ample, consider a binary logit mixed model with grouped data
and a random-effect structure, where the log-odds of success for
observation j in group i are ψij = αi + xijβi , and where either
the αi , the βi , or both receive further hyperpriors. It is not clear
that a good default Metropolis sampler is easily constructed un-
less there are a large number of observations per group. Table 2
shows the results of naı̈vely using an independence Metropolis
sampler based on the Laplace approximation to the full joint
posterior. For a synthetic dataset with a balanced design of 100
observations per group, the Pólya–Gamma method is slightly
better. For the two real datasets with highly unbalanced designs,
it is much better.

Of course, it is certainly possible to design and tune better
MH samplers for mixed models; see, for example, Gamerman
(1997). We simply point out that what works well in the simplest
case need not work well in a slightly more complicated case. The
advantages of the Pólya–Gamma method are that it requires no
tuning, is simple to implement, is uniformly ergodic (Choi and
Hobert 2013), and gives optimal or near-optimal performance
across a range of cases.

In negative-binomial models. The Pólya–Gamma method con-
sistently yields the best effective sample sizes in negative-
binomial regression. However, its effective sampling rate suffers
when working with a large count or a nonintegral overdisper-
sion parameter. Currently, our Pólya–Gamma sampler can draw
from PG(b,ψ) quickly when b = 1, but not for general, integral
b: to sample from PG(b,ψ) when b ∈ N, we take b independent
samples of PG(1, ψ) and sum them. Thus in negative-binomial
models, one must sample at least

∑N
i=1 yi Pólya–Gamma ran-

dom variates, where yi is the ith response at every MCMC itera-
tion. When the number of counts is relatively high, this becomes
a burden. (The sampling method described in Windle, Polson,
and Scott (2013b) leads to better performance, but describing
the alternative method is beyond the subject of this article.)

The columns labeled Sim1 and Sim2 of Table 3 show results
for data simulated from a negative-binomial model with 400
observations and 3 regressors. (See the technical supplement
for details.) In the first case (Sim1), the intercept is chosen so
that the average outcome is a count of 8 (3244 total counts).
Given the small average count size, the Pólya–Gamma method
has a superior effective sampling rate compared to the approxi-
mate method of Frühwirth-Schnatter et al. (2009), the next-best
choice. In the second case (Sim2), the average outcome is a
count of 24 (9593 total counts). Here, the Frühwirth-Schnatter

Table 2. Summary of experiments on real and simulated data for
binary logistic mixed models

Dataset

Synthetic Polls Xerop

ESS
Pólya–Gamma 6976 9194 3039
Metropolis 3675 53 3

ESR
Pólya–Gamma 957 288 311
Metropolis 929 0.36 0.01

NOTE: Metropolis: the result of an independence Metropolis sampler based on the
Laplace approximation. Using a t6 proposal yielded equally poor results. See the technical
supplement for full details.
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Table 3. Summary of experiments on simulated data for
negative-binomial models

Dataset

Sim1 Sim2 GP1 GP2
Total Counts 3244 9593 9137 22732

ESS
Pólya–Gamma 7646 3590 6309 6386
FS09 719 915 1296 1157
Metropolis 749 764 — —

ESR
Pólya–Gamma 285 52 62 3.16
FS09 86 110 24 0.62
Metropolis 73 87 — —

NOTE: Metropolis: the result of an independence Metropolis sampler based on a t6 pro-
posal. FS09: the algorithm of Frühwirth-Schnatter et al. (2009). Sim1 and Sim2: simulated
negative-binomial regression problems. GP1 and GP2: simulated Gaussian-process spatial
models. The independence Metropolis algorithm is not applicable in the spatial models,
where there as many parameters as observations.

et al. algorithm finishes more quickly and therefore has a better
effective sampling rate. In both cases, we restrict the sampler to
integer overdispersion parameters.

As before, the Pólya–Gamma method starts to shine when
working with more complicated hierarchical models that devote
proportionally less time to sampling the auxiliary variables. For
instance, consider a spatial model where we observe counts
y1, . . . , yn at locations x1, . . . , xn, respectively. It is natural to
model the log rate parameter as a Gaussian process:

yi ∼ NB(n, 1/{1 + e−ψi }), ψ ∼ GP(0,K),

where ψ = (ψ1, . . . , ψn)T and K is constructed by evaluating
a covariance kernel at the locations xi . For example, under the
squared-exponential kernel, we have

Kij = κ + exp

{
d(xi, xj )2

2�2

}
,

with characteristic length scale �, nugget κ , and distance func-
tion d (in our examples, Euclidean distance).

Using either the Pólya–Gamma or the Frühwirth-Schnatter
et al. (2009) techniques, one arrives at a multivariate Gaus-
sian conditional for ψ whose covariance matrix involves latent
variables. Producing a random variate from this distribution is
expensive, as one must calculate the Cholesky decomposition of
a relatively large matrix at each iteration. Therefore, the overall
sampler spends relatively less time drawing auxiliary variables.
Since the Pólya–Gamma method leads to a higher effective
sample size, it wastes fewer of the expensive draws for the main
parameter.

The columns labeled GP1 and GP2 of Table 3 show two such
examples. In the first synthetic dataset, 256 equally spaced x
points were used to generate a draw for ψ from a Gaussian pro-
cess with length scale � = 0.1 and nugget κ = 0.0. The average
count was ȳ = 35.7 or 9137 total counts (roughly the same as in
the second regression example, Sim2). In the second synthetic
dataset, we simulated ψ from a Gaussian process over 1000 x
points, with length scale � = 0.1 and a nugget = 0.0001. This
yielded 22,720 total counts. In both cases, the Pólya–Gamma

method led to a more efficient sampler—by a factor of three for
the smaller problem, and five for the larger.

6. DISCUSSION

We have shown that Bayesian inference for logistic models
can be implemented using a data augmentation scheme based
on the novel class of Pólya–Gamma distributions. This leads
to simple Gibbs-sampling algorithms for posterior computa-
tion that exploit standard normal linear-model theory and that
are notably simpler than previous schemes. We have also con-
structed an accept/reject sampler for the new family, with strong
guarantees of efficiency (Propositions 1 and 2).

The evidence suggests that our data-augmentation scheme is
the best current method for fitting complex Bayesian hierarchi-
cal models with binomial likelihoods. It also opens the door
for exact Bayesian treatments of many modern-day machine-
learning classification methods based on mixtures of logits (e.g.,
Salakhutdinov, Mnih, and Hinton 2007; Blei and Lafferty 2007).
Applying the Pólya–Gamma mixture framework to such prob-
lems is currently an active area of research.

Moreover, posterior updating via exponential tilting is a quite
general situation that arises in Bayesian inference incorporat-
ing latent variables. In our case, the posterior distribution of
ω that arises under normal pseudo-data with precision ω and
a PG(b, 0) prior is precisely an exponentially titled PG(b, 0)
random variable. This led to our characterization of the general
PG(b, c) class. An interesting fact is that we were able to iden-
tify the conditional posterior for the latent variable strictly using
its moment-generating function, without ever appealing to the
Bayes’ rule for density functions. This follows the Lévy-penalty
framework of Polson and Scott (2012) and relates to work by
Ciesielski and Taylor (1962) on the sojourn times of Brownian
motion. There may be many other situations where the same
idea is applicable.

Our benchmarks have relied upon serial computation. How-
ever, one may trivially parallelize a vectorized Pólya–Gamma
draw on a multicore CPU. Devising such a sampler for a
graphical-processing unit (GPU) is less straightforward, but po-
tentially more fruitful. The massively parallel nature of GPUs of-
fer a solution to the sluggishness found when sampling PG(n, z)
variables for large, integral n, which was the largest source of
inefficiency with the negative-binomial results presented earlier.

SUPPLEMENTARY MATERIALS

Technical Supplement: Additional details on the sampling
algorithm and our empirical study of its efficiency.

[Received May 2012. Revised February 2013.]
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——— (2013b), “Improved Pólya-Gamma Sampling,” Technical Report, Uni-
versity of Texas at Austin. [1340,1346,1347]

http://CRAN.R-project.org/package=mlmRev
http://luc.devroye.org/rnbookindex.html
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/package=bayesm
http://cran.r-project.org/web/packages/BayesLogit/index.html

	Bayesian Inference for Logistic Models Using P&oacute;lya&ndash;Gamma Latent Variables
	INTRODUCTION
	THE P&Oacute;LYA&ndash;GAMMA DISTRIBUTION
	The Case <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$unhbox voidb@x hbox {PG}(b,0)$?></0:texstructure></0:equation></0:inlinematheqn>@empty

	The General <0:inlinematheqn ><0:equation ><0:texstructure ><?xmlpublish	$unhbox voidb@x hbox {PG}(b,c)$?></0:texstructure></0:equation></0:inlinematheqn>@empty
 Class
	Further Properties

	THE DATA-AUGMENTATION STRATEGY
	Main Result
	Existing Data-Augmentation Schemes
	Mixed Model Example

	SIMULATING P&Oacute;LYA&ndash;GAMMA RANDOM VARIABLES
	The PG(1,<0:i >z</0:i>@empty )
Sampler
	Analysis of Acceptance Rate
	Analysis of Tail Probabilities
	The General PG(<0:i >b</0:i>@empty , <0:i >z</0:i>@empty )
Case

	EXPERIMENTS
	DISCUSSION
	SUPPLEMENTARY MATERIALS


