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In small area estimation, it is a standard practice to assume that the area effects are exchangeable. This is obtained
by assuming that the area effects have a common parametric distribution, and a Bayesian approach is attractive. The
Dirichlet process prior (DPP) has been used to provide a nonparametric version of this approach. The DPP is useful
because it makes the procedure more robust, and the Bayesian approach helps to reduce the effect of nonidentifiability
prominent in nonignorable nonresponse models. Using the DPP, we develop a Bayesian methodology for the analysis
of nonignorable nonresponse binary data from many small areas, and for each area, we estimate the proportion of
individuals with a particular characteristic. Our DPP model is centered on a baseline model, a standard parametric
model. We use Markov chain Monte Carlo methods to fit the DPP model and the baseline model, and our methodology
is illustrated using data on victimization in ten domains from the National Crime Survey. Our comparisons show that
it may be preferable to use the nonparametric DPP model over the parametric baseline model for the analysis of these
data.

Keywords: Dirichlet process prior; Exchangeability; Identifiability; Griddy Gibbs sampler; Selection model

1 INTRODUCTION

The Dirichlet process prior (DPP) has been used to model clustered data in situations where
the cluster effects are exchangeable, thereby providing a nonparametric Bayesian approach
to the analysis of clustered data. In addition, there has recently been much activity in the
analysis of survey nonresponse, and the response rates in many surveys have been decreasing
internationally (Groves and Couper, 1998; De Heer, 1999;). For many of these surveys the
responses are binary. For example, the National Crime Survey (NCS) estimates the proportion
of households with at least one experience of crime. Using the DPP, we develop a Bayesian
methodology for the analysis of nonignorable nonresponse binary data from small areas to
estimate the proportion of individuals with a particular characteristic for each area.
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In small area estimation, it is a standard practice to assume that the area effects are exchange-
able. This assumption is accommodated by allowing the area effects to have a common paramet-
ric distribution, and it facilitates a ‘borrowing of strength’across the ensemble. However, when
there is a preference for a more robust approach, one may prefer a nonparametric Bayesian
approach. A natural way to deal with this situation is to use the DPP. Ferguson (1973, 1974),
Escobar (1994) and Escobar and West (1995) have used the DPP to perform nonparametric
Bayesian analysis on normal data. Additionally, Kong et al (1994) have used nonparamet-
ric Bayesian analysis for binomial data. The DPP offers some flexibility and robustness to
departures from the assumption of a parametric distribution.

There are three types of nonresponse (see Little and Rubin, 1987). When the response
indicator is independent of all other variables in the survey, the nonresponse is said to be
missing completely at random (MCAR). When the response indicator depends only on the
observed values, the nonresponse is said to be missing at random (MAR). When the response
indicator depends on the unobserved values, the nonresponse is said to be nonignorable or
informative. Models with an MCAR or MAR response mechanism are called ignorable when
the parameters for the response model are distinct from the parameters for the data model;
otherwise the models are nonignorable (Rubin, 1976). One of the two approaches to model
nonignorability is to introduce parameters which control the extent of nonignorability in models
for the observed data and considers the sensitivity of quantities of interest to a priori realistic
changes in these parameters (e.g., Forster and Smith, 1998; Nandram and Choi, 2002a,b).

An ongoing issue in the nonresponse literature is whether the selection or the pattern mixture
approaches should be used for modeling of nonresponse. Little and Rubin (1987) and Little
(1993) distinguished between these two classes of models for missing data. In the selection
approach, the hypothetical complete data are modeled, and a model for the non-response
mechanism is added conditional on the hypothetical data. In the pattern mixture approach,
the population is stratified into two patterns, respondents and nonrespondents, each being
modeled separately, and the final answer is obtained by a probabilistic mixture of these two.
The selection approach is more natural and convenient for our application.

In nonignorable nonresponse models, some parameters are not identifiable. In a pattern mix-
ture model, the parameters associated with the nonresponse pattern are not identifiable because
there are no data to estimate these parameters, unless a centered model can be constructed.
However, in a selection model it is possible to estimate the parameters with reasonable effi-
ciency using a Bayesian approach because the parameters cannot be separated from the data in
the likelihood function (false in the pattern mixture model). Although the parameters are still
not identifiable, the Bayesian approach helps to reduce this effect. We note that the nonpara-
metric approach using the DPP has nothing to do with this issue, and in the selection model, it
is not true that the data do not play a role when these ‘nonidentifiable’parameters are estimated.

Stasny (1991) used a hierarchical Bayesian model to study victimization in the NCS. Stasny
(1991) used the Bayesian selection approach which was developed primarily to study sample
selection problems (e.g., Heckman, 1976; Olson, 1980). However, the Stasny Bayes empirical
Bayes approach assumes that the hyper-parameters are fixed but unknown, and these param-
eters are estimated using maximum likelihood methods. This approach has been extended
in several directions. (See Nandram and Choi (2002a,b) and Nandram et al. (2002) for full
Bayesian analyses.) To permit a flexibility in robustness to the prior specifications, we study a
nonparametric hierarchical Bayes model that can be used to study nonignorable nonresponse
for binary data from many areas. We use a nonparametric Bayesian method to analyze non-
ignorable nonresponse binary data. But unlike Stasny (1991), Nandram and Choi (2002a,b)
and Nandram et al. (2002) who assume that the parameters identifying the areas come from a
common probability density function, we assume the DPP for these parameters. Thus, in our
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model with the DPP, the Stasny’s nonignorable model is our baseline model. However, unlike
Nandram and Choi (2002a,b), we do not express uncertainty about ignorability in this article.

A related literature is on what is now known as uncertain pooling used primarily for exper-
iments, not small areas. The experiments are partitioned and there can be many partitions
depending on the number of experiments. The experiments in each partition set are assumed
to be similar, and there is uncertainty about which partition is the correct one. This methodol-
ogy works well for a small number of experiments, but for problems with many experiments
(or areas) it may be infeasible. Malec and Sedransk (1992), Consoni and Veronese (1995),
Mallick and Walker (1997) and Evans and Sedransk (2001), discussed Bayesian methodology
for combining results from several normal or binomial experiments. However, while we are
not dealing with the problem of uncertain pooling, the methodology we describe in this article
can be used to identify certain groups.

Our main objective is to develop a methodology for the analysis of nonignorable nonre-
sponse binary data from many small areas when a relatively robust approach may be desirable.
We use data from the NCS to illustrate our methodology. The rest of the article is organized as
follows. In Section 2, we describe the NCS data to further motivate our objectives. In Section 3,
we first describe a parametric baseline hierarchical Bayesian model. We describe the nature of
nonidentifiability in the baseline model. Then, we describe our DPP model which is centered
on the baseline model, and like the baseline model it assumes that the area effects are exchange-
able. Both models are constructed for nonignorable nonresponse binary data. We also describe
how to fit the models using Markov chain Monte Carlo (MCMC) methods. In Section 4, we
illustrate our methodology and provide some empirical results using the NCS data. Finally,
Section 5 contains concluding remarks.

2 NATIONAL CRIME SURVEY

The NCS is a large scale household survey conducted by the U.S. Bureau of the Census for
the Bureau of Justice Statistics. Stasny (1991) summarized the NCS data and discussed the
design of the NCS. Like Stasny (1991), features of the sampling design are not reflected in our
modeling except that we assume the data are collected by probability sampling.

Data from the NCS are used to produce quarterly estimates of victimization rate and yearly
estimates of the prevalence of crimes. Individuals interviewed for the NCS are asked about
crimes (e.g., assault, auto or motor vehicle theft, burglary, larceny, rape and robbery) committed
against them or against their property in the previous six months.

We used the data created by Stasny (1991), who took a random start at the record for the
eighth household (ordered on the original longitudinal file) in the full data set and then every
15th record after that. The data are poststratified into domains according to three neighborhood
characteristics: (i) urban (U) and rural (R), (ii) central city (C), other incorporated place (I)
and unincorporated or not a place (N) and (iii) low poverty level (L) (9% or fewer of families
below poverty level) and high poverty level (H) (10% or more of families below poverty level).
Since it is practically impossible for a rural area to be a central city, as observed by Stasny
(1991), this poststratification results in 10 domains.

We define a binary variable to be 1 if there is at least one crime in a household (i.e., household
is victimized), and 0 otherwise. Let

yij =
{

1, if households j in area i is victimized

0, if household j in area i is not victimized
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and

rij =
{

1, if households j in area i is a respondent

0, if household j in area i is not a respondent,

i = 1, . . . , �, j = 1, . . . , ni . Essentially our models start with the yij and rij . We define yi =∑ri
j=1 yij and ri = ∑ni

j=1 rij . That is, yi is the number of successes (i.e., households with crimes
in the NCS), ri is the number of respondents and ni is the number of households sampled in
the ith domain or area), i = 1, . . . , � where � = 10 domains.

It is convenient to present the data for the NCS in Table I. The nonresponse rate in these
domains ranges from 9.4% to 16.9%, and one reason for nonresponse is that a woman may
be embarrassed to report a rape committed by an attacker. The domains UNH, RIL and RIH
can be considered small areas because there are relatively few households in these domains,
and they have relatively high observed nonresponse rates. But note that UNL has the highest
nonresponse rate.

Let p̂i be the observed proportion of households with at least one crime in the ith domain.
Inspection of the p̂i seems to reveal two groups of domains, which are (UCL, UCH, UIL, UIH,
UNL, UNH, RIL) and (RIH, RNL, RNH). For the first group, the average (standard deviation)
of the p̂i is 0.230 (0.022) and for the second group 0.120 (0.038). Thus, it appears that there
are two groups of data, but making two different assumptions for these two groups of data will
definitely lose efficiency since one group has seven domains and the other has three domains. It
is possible to still assume that the pi are exchangeable, but one can use more robust assumption.
The DPP is an appropriate candidate.

Stasny (1991) suggested that nonresponse does not occur at random with respect to victim-
ization status (see also Saphire, 1984; Stasny, 1990). For the analysis of this data set, Nandram
and Choi (2002a) made two key contributions: (a) discern whether nonresponse is ignorable
or not and (b) introduce a new model in which the degree of ignorability may vary from one
area to another. Here, our contribution is to perform a nonparametric Bayesian analysis of
these data by providing a prior that makes our procedure more robust. This can help to reduce
overshrinkage, a possible nuisance in small area estimation.

Finally, we note that individuals who are victimized tend to respond less frequently than
individuals who are not victimized. This information is useful when the DPP model is fit;
it permits stability in computation, helps to improve precision, and it reduces the effects of

TABLE I NCS Data (Stasny, 1991).

Domain y r − y n − r p̂ δ̂

UCL 156 555 104 0.219 0.872
UCH 95 364 73 0.207 0.862
UIL 162 557 101 0.225 0.877
UIH 72 262 36 0.216 0.903
UNL 92 297 79 0.237 0.831
UNH 15 40 9 0.273 0.859
RIL 11 36 7 0.234 0.870
RIH 10 105 20 0.087 0.852
RNL 35 274 32 0.113 0.906
RNH 79 413 64 0.161 0.885

Note: Crimes were committed during January–June, 1975. The response
is binary: 0 for no crimes and 1 for at least one crime; p̂ is the observed pro-
portion of households with at least one crime; δ̂ is the observed proportion
of respondents.
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nonidentifiability. We note that this information was not incorporated into the models of Stasny
(1991) and Nandram and Choi (2002a).

3 HIERARCHICAL BAYES NONRESPONSE MODELS

In Section 3.1, we describe the baseline nonignorable nonresponse model and the nonpara-
metric Bayesian model. In Section 3.2, we discuss the issue of identifiability for the base-
line nonignorable model. We describe the DPP model in Section 3.3 and its computations in
Section 3.4.

3.1 Baseline Nonresponse Model

Our baseline model is a nonignorable nonresponse model, and is given by

yij |pi

iid∼ Bernoulli (pi), j = 1, . . . , ni, i = 1, . . . , �,

rij |yij = s, πis

iid∼ Bernoulli (πis), s = 0, 1. (1)

pi |µ1, τ1
iid∼ Beta (µ1τ1, (1 − µ1)τ1), (2)

πis |µs+2, τs+2
iid∼ Beta (µs+2τs+2, (1 − µs+2)τs+2), s = 0, 1. (3)

Assumptions (2) and (3) express similarity among the states. This similarity helps when
the weakly identified parameters like πi0 and πi1 are estimated, but may encourage too much
pooling. Therefore, to restrict the pooling one may use a more robust prior specification.

We complete the prior specification by taking µk, k = 1, 2, 3 and τk, k = 1, 2, 3 to be inde-
pendent. Specifically, for the µk

µ1 ∼ Uniform(0, 1), µ2 ∼ Uniform(µ3, 1) and µ3 ∼ Uniform(0, 1). (4)

To incorporate the information that non-victimized households tend to respond more frequently
than victimized households, in Eq. (4) we take µ2 ≥ µ3. In other situations, with expert opinion
one might prefer to reverse this inequality.

For the τk , we take

τk

iid∼ S(1), k = 1, 2, 3, (5)

where the notation X
iid∼ S(a) means that p(x) = a/(a + x)2, x ≥ 0 and a ≥ 0. This is the

shrinkage prior density, used to keep X away from the boundary of the parameter space (i.e.,
near x = 0).

3.2 Discussion of Identifiability

To illustrate the issue of identifiability, we consider the baseline model for a single area,
momentarily dropping the notation for the single area.

The likelihood function is

L(p, π0, π1 | y, r) = (π1p)y(π0(1 − p))r−y(1 − π1p − π0(1 − p))n−r .
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Now consider the transformation α = π1p and β = π0(1 − p). Then, the likelihood function
becomes

L(α, β | y, r) = αyβr−y(1 − α − β)n−r ,

which is a function only of two parameters, α and β. Thus, p, π0 and π1 are not identifiable,
and so they cannot be estimated.

Letting γ = π1/π0, observe that α/β = γ (p/(1 − p)). Thus, if γ is known, then p is
identifiable. For example, if γ = 1 (i.e., π0 = π1, ignorable nonresponse model), then p =
α/(α + β). Thus, once γ is unknown (i.e., the relation between π0 and π1 is unknown), p, π0

and π1 are all nonidentifiable. The failure of the non-Bayesian method is primarily due to the
lack of information about p, π0 and π1. If there is some knowledge about the relation between
π0 and π1, there will be an improvement in inference; see Nandram and Choi (2002a,b) for an
approach via an expansion model when γ is unknown.

Let z denote the number of households with at least one crime among the nonrespondents,
and note that z is a latent variable. The entire nonresponse problem is solved once z becomes
known. Suppose we consider proper noninformative prior densities for p, π0 and π1 with

p, π0, π1
iid∼ Uniform(0, 1). Then the joint posterior density of the parameters z, p, π0, π1,

given y and r is

f (p, π0, π1, z | y, r) ∝
(

n − r

z

)
py+z(1 − p)n−y−zπ

r−y

0 (1 − π0)
n−r−z(π1)

y(1 − π1)
z,

where 0 < p, π0, π1 < 1, and z = 0, 1, . . . , n − r . Now, letting B(u, v) = �(u)�(v)/�(u +
v) (�(u) is the gamma function) denote the beta function, the normalization constant is

n−r∑
z=0

(
n − r

z

)
B(y + z + 1, n − y − z + 1)B(r − y + 1, n − r − z + 1)B(y + 1, z + 1)

and obviously this latter quantity is finite. That is, as indicated above, the joint posterior density
of p, π0, π1 | y, r is proper. Thus, p, π0, π1 are all identifiable, albeit wealdy.

Note that we have incorporated virtually no information through the uniform priors. Thus,
it is simply because the parameters p, π0, π1 and z are bounded that help them to become
identifiable. This is a strength of the Bayesian paradigm.

Inference about p, π0 and π1 can be easily obtained because the joint posterior density of
p, π0 and π1 is

f (p, π0, π1 | y, r) =
n−r∑
z=0

f (p, π0, π1 | Z = z, y, r) Pr(Z = z | y, r),

where

Pr(Z = z | y, r) = ωz

n−r∑
z′=0

ωz′
= ω̃z, z = 0, . . . , n − r,

and

ωz =
(

n − r

z

)
B(y + z + 1, n − y − z + 1)B(r − y + 1, n − r − z + 1)B(y + 1, z + 1).
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Also, given z, y and r , it is clear that p, π0 and π1 are independent with

p | z, y, r ∼ Beta(y + z + 1, n − y − z + 1),

π0 | z, y, r ∼ Beta(r − y + 1, n − r − z + 1) and

π1 | z, y, r ∼ Beta(y + 1, z + 1).

Thus, a posteriori inference about p, π0 and π1 can be made by drawing samples from
p, π0, π1, z | y, r using the composition method. In particular, we note that while a priori
inference about p, π0 and π1 is based on uniform distributions, a posteriori inference about p,
π0 and π1 is based on mixtures of beta distributions. Specifically, p | y, r ∼ ∑n−r

z=0 ω̃zBeta(y +
z + 1, n − y − z + 1), π0 | y, r ∼ ∑n−r

z=0 ω̃zBeta(r − y + 1, n − r − z + 1), and π1 | y, r ∼∑n−r
z=0 ω̃zBeta(y + 1, z + 1). Then, obviously there must be improved inference about p, π0

and π1 a posteriori.

3.3 Model with Dirichlet Process Prior

We maintain the structure in Eq. (1),

yij |pi

iid∼ Bernoulli (pi),

rij |yij = s, πis

iid∼ Bernoulli (πis), s = 0, 1.

Instead of the prior densities in Eqs. (2) and (3), we use the DPP.
Letting θi = (pi, πi0, πi1), we assume that, given a cumulative distribution function, G

say, that

θi |G iid∼ G(·).

To express uncertainty about G(·), we assume that given α and G0(·),

G(·) ∼ Dirichlet{αG0(·)},

a Dirichlet process defined by α, a positive real number, and G0(·), the prior specification
of G(·). In fact, E(G(θ)) = G0(θ) for all θ and α is a precision parameter, determining the
concentration of the prior distribution for G(·) around G0(·). Here α is assumed unknown, and
G0(·) has a specified form with its parameters unknown.

This is the standard assumption of exchangeability for θi , i = 1, . . . , �, within a Bayesian
nonparametric framework, in which θi , i = 1, . . . , � are the first � realizations from a general
Polya-urn scheme (Blackwell and MacQueen, 1973). That is, conditional on G0 and α, when
G is integrated over its prior distribution, the sequence of θis follows the general urn scheme

θ1 ∼ G0,

θi | θ1, . . . , θi−1




= θj with probability
1

α + i − 1

∼ G0 with probability
α

α + i − 1
,

j = 1, . . . , i − 1, i = 2, . . . , �.
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A key feature of DPP is associated with the discreteness of G(·) under the Dirichlet process
assumption (Ferguson, 1973). In any sample, θi , i, = 1, . . . , �, from G(·), there is a positive
probability that some of these θi coincide. That is, there are k(1 ≤ k ≤ �), parameters that
describe the � areas. The structure is such that the posterior distribution will strongly support
common values of individual parameters, θi and θi′ for data points (yi, ri) and (yi′ , ri′ ) that
are close. Thus, we can combine information locally in the sample space to estimate the local
structure. This is where the nonparametric structure in our formulation arises.

In our application, we take G0(·) corresponding to θi as

G0(pi, πi0, πi1) = G01(pi)G02(πi0)G03(πi1), (6)

where the prior densities for pi, πi0 and πi1 are assumed to be independent as in the baseline
model and specified as

pi |µ1, τ1
iid∼ Beta(µ1τ1, (1 − µ1)τ1),

πis |µs+2, τs+2
iid∼ Beta(µs+2τs+2, (1 − µs+2)τs+2), s = 0, 1.

As in the baseline model, a priori we specify µk, k = 1, 2, 3 and τk, k = 1, 2, 3 exactly as
in Eqs. (4) and (5), respectively. The specification µ2 ≥ µ3 is specifically useful when the DPP
model is fit. In the NCS we have only 10 areas, so that when the DPP is fit, the number of
clusters (k) of areas is smaller than 10 and can obviously be as small as 1. When the number
of clusters is small (e.g., 2 or 3), obviously there is a difficulty in running the Gibbs sampler
to fit the conditional posterior density of the hyperparameters.

Finally, we consider the prior specification for α, and we denote the prior density for α

by p(α). In particular, Escobar and West (1995) derived an elegant form for the conditional
posterior density of γ when the prior is α ∼ Gamma(a, b); see Appendix A for a review of the
discussion. In fact, for the astronomy data of Roeder (1990), Escobar and West (1995) took
a = 2 and b = 4. Nowadays, it is a standard specification to take a = 0.001 and b = 0.001
for a proper diffuse prior for α in practical Bayesian work as documented in readily available
software (see Spiegelhalter et al. 1996). We have found that inference is sensitive to the choice
of a and b so that this simple prior density may not work so well. To avoid this problem, one of
the recently recommended priors for variance components is the shrinkage prior (see Daniels,
1999; Natarajan and Kass, 2000) which is also proper and the median of this prior density
must be specified. From Appendix A we have

p(α|k) ∝ p(α)αk �(α)

�(α + �)
, 0 < α < ∞.

We use the shrinkage prior

p(α) = κ0

(κ0 + α)2
, 0 < α < ∞

where κ0 is the median of p(α) and is to be chosen.

3.4 Computations for the Model with Dirichlet Process Prior

We use the griddy Gibbs sampler to obtain samples from the joint posterior density of all the
parameters. See Ritter and Tanner (1992) for an introduction to the griddy Gibbs sampler and
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Tanner (1993) for a more elaborate pedagogy. We can draw samples from f (θi |y, r, µ, τ )

as follows. We note that f (θi , zi |y, r, µ, τ ) = g1(θi |zi, y, r, µ, τ ) p(zi |y, r, µ, τ ), where
g1(θi |zi, y, r, µ, τ ) can be easily written down.

Note that, given zi, yi, ri, µ, τ , the parameters pi, πi0 and πi1 are independent with

pi |zi, yi, riµ1, τ1
ind∼ Beta(zi + yi + µ1τ1, ni − zi − yi + (1 − µ1)τ1),

πi0|zi, yi, ri, µ2, τ2
ind∼ Beta(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2),

πi1|zi, yi, ri, µ3, τ3
ind∼ Beta(yi + µ3τ3, zi + (1 − µ3)τ3).

The posterior distribution of zi is as follows. Letting

p(Zi = zi |y, r, µ, τ ) ∝ ωzi∑ni−ri
z′
i
=0

ωz′
i

where

ωzi
=

(
ni − ri

zi

)
B(zi + yi + µ1τ1, ni − zi − yi + (1 − µ1)τ1)

× B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)B(yi + µ3τ3, zi + (1 − µ3)τ3),

zi = 0, . . . , ni − ri and i = 1, . . . , �. Thus, we draw zi from p(Zi = zi |y, r, µ, τ ), and with
this zi , we draw pi, πi0 and πi1 independently.

Next, we describe the conditional posterior densities for θ1, . . . , θ�. Let θ(i) denote the
vector of all θi except the ith one. That is, θ(i) = (θ1, . . . , θi−1, θi+1, . . . , θ�)

′, i = 1, . . . , �.
It is pertinent to describe the conditional posterior density of θi |θ(i), r, y, µ, τ , α. First, we
describe two important components of this distribution.

Under the baseline model, the likelihood function is

p(yi, ri |θi ) =
(

ni

ri

) (
ri

yi

)
(πi1pi)

yi (πi0(1 − pi))
ri−yi

× {(1 − πi1)pi + (1 − πi0)(1 − pi)}ni−yi , (7)

yi = 0, . . . , ri and ri = yi, yi+1, . . . , ni , with independence over i, i = 1, . . . , �. Since the
number of households in the ith domain with at least one crime for the nonrespondents is
unknown, we denote it by the latent variable zi , and the number of households with no vic-
timization among the nonrespondents is ni − ri − zi . The introduction of zi into the analysis
simplifies the computations. Then, incorporating the latent variables into our model, we obtain
the augmented likelihood function

p(yi, ri, zi | θi ) =
(

ni

ri

) (
ri

yi

)
(πi1pi)

yi (πi0(1 − pi))
ri−yi

× {(1 − πi1)pi}zi {(1 − πi0)(1 − pi)}ni−ri−zi ,
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i = 1, . . . , �. By marginalizing over θi , we have

A(yi, ri) =
(

ni

ri

) (
ri

yi

)
ni−ri∑
zi=0

(
ni − ri

zi

)
B(yi + zi + µ1τ1, ni − yi − zi + (1 − µ1)τ1)

B(µ1τ1, (1 − µ1)τ1)

× B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)

B(µ2τ2, (1 − µ2)τ2)

× B(yi + µ3τ3, zi + (1 − µ3)τ3)

B(µ3τ3, (1 − µ3)τ3)
, i = 1, . . . , �. (8)

The second quantity is the posterior density of θi under the baseline model which is

f (pi, π0i , π1i |y, r, µ, τ )

∝
ni−ri∑
zi=0

{(
ni − ri

zi

)
B(yi + zi + µ1τ1, ni − yi − zi + (1 − µ1)τ1)

× B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)B(yi + µ3τ3, zi + (1 − µ3)τ3)

× p
yi+zi+µ1τ1−1
i (1 − pi)

ni−yi−zi+(1−µ1)τ1−1

B(yi + zi + µ1τ1, ni − yi − zi + (1 − µ1)τ1)

× π
ri−yi+µ2τ2−1
i0 (1 − πi0)

ni−ri−zi+(1−µ2)τ2−1

B(ri − yi + µ2τ2, ni − ri − zi + (1 − µ2)τ2)

×π
yi+µ3τ3−1
i1 (1 − πi1)

zi+(1−µ3)τ3−1

B(yi + µ3τ3, zi + (1 − µ3)τ3)

}
, i = 1, . . . , �. (9)

Now, letting Qj denote the probability that θi is the same as θj conditional on α, we have

Qj = p(yi, ri |θj )
αA(yi, ri) + ∑�

j=1,j 	=i p(yi, ri |θj )
,

where p(yi, ri |θj ) is given by Eq. (7) with θi begin replaced by θj and A(yi, ri) is given by
Eq. (8).

Then, using Theorem 1 of Escobar (1994), we have

θi |θ(i), r, y, µ, τ , α




= θj with probability Qj, i 	= j

∼ f (θi |r, y, µ, τ ) with probability (1 −
�∑

j=1,j 	=i

Qj ),

where f (θi |r, y, µ, τ ) is the probability density under the baseline model in Eq. (9). Note
that the original � areas replaced by k areas (k ≤ �). That is, this conditional posterior density
describes how the discreteness arises, and

∑�
j=1,j 	=i Qj is the probability θi is one of the other

θi′ , i ′ 	= i conditional to α.
We use grids to obtain samples from the conditional posterior density of (µ, τ ), given θ .

Let θ∗
1 , . . . , θ∗

k be the k distinct values, where θ∗
i = (p∗

i , π
∗
i0, π

∗
i1). Then,

p(µ, τ |θ (∗), k)

∝
k∏

i=1

{
p

∗(µ1τ1−1)

i (1 − p∗
i )

(1−µ1)r1−1

B(µ1τ1, (1 − µ1)τ1)

π
∗(µ2τ2−1)

i0 (1 − π∗
i0)

(1−µ2)τ2−1

B(µ2τ2, (1 − µ2)τ2)

×π
∗(µ3τ3−1)

i1 (1 − π∗
i1)

(1−µ3)τ3−1

B(µ3τ3, (1 − µ3)τ3)

}
3∏

r=1

1

(1 + τr)2
.
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For example, letting a = ∏k
i=1 p∗

i and b = ∏k
i=1(1 − p∗

i ), for (µ1, τ1) the joint conditional
posterior density is

p(µ1, τ1|θ∗, k) ∝ 1

(1 + τ1)2

aµ1τ1−1b(1−µ1)τ1−1

B(µ1τ1, (1 − µ1)τ1)

Then, for µ1

p(µ1|τ1, θ
∗, k) ∝ a(µ1τ1−1)b(1−µ1)τ1−1

B(µ1τ1, (1 − µ1)τ1)
.

For τ1, we make the transformation τ1 = ν1/(µ1 − ν1), with 0 < ν1 < µ1, to have

p(ν1|µ1, θ
∗, k) ∝ aµ1(ν1/(µ1−ν1))−1b(1−µ1)(ν1/(µ1−ν1))−1

B(µ1(ν1/(µ1 − ν1)), (1 − µ1)(ν1/(µ1 − ν1)))
, 0 < ν1 < µ1.

The conditional posterior density of α is only related to k. Escobar and West (1995) show
how to get samples from the conditional posterior density, and their argument shows that it is
same for all DPPs of the general three-stage hierarchical model. Specifically, the conditional
posterior density for α is

p(α|k) ∝ (κ0 + α)−2αk �(α)

�(α + �)
, 0 < α < ∞.

Transforming α to ρ = α/(α + 1), 0 < ρ < 1, the conditional posterior density for ρ is

p(ρ|k) ∝ (1 − ρ)−2

{
ρ

1 − ρ

}k {
κ0 + ρ

1 − ρ

}−2
�{ρ/(1 − ρ)}

�{� + ρ/(1 − ρ)} , 0 < ρ < 1

where κ0 is to be specified.
For µ1, ν1 and ρ, the grid procedure is the same. Bounded intervals improve the grid method.

We stratify the range into a large number of grids (e.g., 100) to approximate the probability
density function by a probability mass function.

We have used the griddy Gibbs sampler to fit both the baseline and the DPP models. The
baseline model was fit using the Metropolis-Hastings sampler in our previous work. However
in this work for a more appropriate comparison we use the griddy Gibbs sampler. We drew
11,000 iterates, threw out the first 1000, and took every tenth. This is very conservative because
convergence is very rapid.

4 NUMERICAL RESULTS

First, we consider the baseline model to assess the impact of the data on the prior distri-
butions of the πi0 and πi1. For the prior distributions, we fit the NCS data to the base-
line model to get estimates of (µ2, µ3) and (τ2, τ3), and we sample the beta distributions
πis−2 ∼ iid Beta(µsτs/10, (1 − µs)τs/10), s = 2, 3 to construct prior data. The griddy Gibbs
sampler provide data for the baseline model from the corresponding posterior densities. Note
that the prior distributions for the πi0 or the πi1 are the same, but the corresponding posterior
densities are different. The comparisons are presented in Figure 1 for the πi0 and in Figure 2
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FIGURE 1 Box plots of the prior densities (top panel) and the posterior densities (bottom panel) of πi0 by domain.

for the πi1. In both cases, the posterior distributions are less variable than the prior distribu-
tions, and the posterior distributions are different across the domains showing the impact of
the data on the prior distributions.

Next, we have used the NCS data to compare inference about pi and δi = (1 − p)πi0 +
pπi1; πi0 and πi1 are nuisance parameters.

We present the results in Tables II and III. In each table, we have presented the posterior
means (PM), the posterior standard deviations (PSD), the numerical standard errors (NSE) and
the 95% credible intervals (CI) for the baseline and the DPP models. To obtain 95% interval,
we ordered the 1000 iterates of each parameter from the smallest to the largest, and obtain
the 25th and 975th values. The NSE is a measure of the changes that are expected when the
computations are repeated in exactly the same manner; we use the batch means method with
40 batches of length 25. Obviously, we need the NSE to be as small as possible.

First, consider the pi in Table II. The PMs are very similar for the two models except
perhaps for UIH, UNL and UNH. As is expected, the PSDs are larger for the DPP model
except for UNH and RIL. The NSEs are larger for the DPP model, but observe how close they
are for RIH. Consequently, the 95% CI for the DPP model are generally wider with overlaps
for some domains.
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FIGURE 2 Box plots of the prior densities (top panel) and the posterior densities (bottom panel) of πi1 by domain.

We note one important feature. For the baseline model, the average (standard deviation) of
the PM for the first seven domains is 0.273 (0.015) and for the last three domains 0.186 (0.024).
For the DPP model, the average (standard deviation) of the PM for the first seven domains is
0.274 (0.003) and for the last three domains 0.197 (0.022). Thus, the two groups of domains
are more distinct when the DPP model is fit rather than the baseline model.

Second, we consider the response probabilities δi in Table III. The PM for the two models are
generally very similar with some differences. The largest difference occurs for UNL; compare
0.838 for the baseline model with 0.863 for the DPP model. The NSE are very similar and
very small reflecting good performance of the griddy Gibbs sampler for the δi . It is surprising
that the PSD for the DPP model are much smaller than the corresponding PSD for the baseline
model (e.g., the ratio of the PSD for the DPP versus the baseline model for UNH is 0.43). This
makes the 95% CI for the DPP model shorter than those of the baseline model. This seems
very interesting.

Another quantity of interest is the posterior probability mass function of k. Since
the conditional posterior density of k is p(k|α) = s�(k)αk�(α)/�(α + �), k = 1, . . . , �, a
Rao–Balckwellized (RB) estimator of p(k|y, r) is

p̂
(rb)
k = M−1

M∑
h=1

s�(k)αk
(h)

�(α(h))

�(α(h) + �)
, k = 1, . . . , �,
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TABLE II Comparison of the PM, PSD, NSE and 95% CI for p from
the Baseline and DPP Models.

Domain PM PSD NSE CI

(a) Baseline model
UCL 0.269 0.036 0.017 (0.200, 0.329)
UCH 0.262 0.038 0.016 (0.190, 0.328)
UIL 0.273 0.037 0.018 (0.198, 0.332)
UIH 0.254 0.034 0.014 (0.187, 0.313)
UNL 0.295 0.046 0.019 (0.205, 0.374)
UNH 0.291 0.056 0.020 (0.186, 0.408)
RIL 0.269 0.058 0.019 (0.164, 0.389)
RIH 0.178 0.049 0.020 (0.087, 0.274)
RNL 0.168 0.034 0.013 (0.105, 0.234)
RNH 0.213 0.034 0.015 (0.150, 0.275)

(b) DPP model
UCL 0.274 0.045 0.041 (0.196, 0.327)
UCH 0.274 0.045 0.041 (0.196, 0.327)
UIL 0.275 0.045 0.041 (0.196, 0.329)
UIH 0.272 0.045 0.040 (0.186, 0.327)
UNL 0.280 0.049 0.041 (0.197, 0.365)
UNH 0.276 0.048 0.042 (0.196, 0.342)
RIL 0.270 0.049 0.039 (0.185, 0.331)
RIH 0.186 0.049 0.022 (0.084, 0.265)
RNL 0.183 0.042 0.020 (0.096, 0.248)
RNH 0.223 0.051 0.030 (0.126, 0.312)

Note: p = Pr(y = 1|p) where y = 1 for a victimized household and
0 otherwise.

where α(h), h = 1, . . . , M are M = 1000 iterates from the griddy Gibbs sampler. It is known
that the RB estimator has smaller mean square error than the corresponding empirical estimator.

We found an interesting feature in estimating the posterior mass function of k. Even if
p(k|y, r) is negligible, this estimator can give a substantial probability to this value. For
instance, at κ0 = 1, of the 1000 iterates from the griddy Gibbs sampler virtually none has k = 1,
yet the estimate of this probability is 0.225 when the RB estimator p̂

(rb)
k is used. Essentially

the RB estimator splits the probability at k = 2 into k = 1 and k = 2, allocating a substantial
probability to k = 1. This does not show that the RB estimator performs poorly. In fact, we
have found that this behavior is associated with the estimation of α. We have computed the
posterior probabilities at κ0 = 1 for k = 1, 2 at the lower quartile (0.36), median (0.74) and
upper quartile (1.35) of the posterior density of α; at k = 2 the probabilities are 0.39, 0.17,
0.05 and at k = 3 they are 0.40, 0.35, 0.20. It appears that the problem is caused by the fact
that the posterior distribution tends to concentrate near zero (i.e., α tends to be too small). This
problem can be resolved if there is improved prior information about α which can be obtained
through prior elicitation.

It is sensible to consider the alternative simple empirical estimator, based on the Gibbs
iterates,

p̂
(e)
k = Nk

M
, k = 1, . . . , �

where Nk is the number of iterates out of M with k distinct groups. In Table IV, we present the
p̂

(e)
k and p̂

(rb)
k for κ0 = 1. (We will consider the entire table later.) The p̂

(e)
k indicate that k = 2
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TABLE III Comparison of the PM, PSD, NSE and 95% CI for δ from
the Baseline and DPP Models.

Domain PM PSD NSE CI

(a) Baseline model
UCL 0.872 0.011 0.002 (0.851, 0.892)
UCH 0.864 0.014 0.003 (0.836, 0.889)
UIL 0.875 0.011 0.002 (0.853, 0.896)
UIH 0.893 0.014 0.003 (0.864, 0.920)
UNL 0.838 0.016 0.004 (0.807, 0.867)
UNH 0.861 0.028 0.005 (0.797, 0.907)
RIL 0.867 0.030 0.006 (0.801, 0.919)
RIH 0.866 0.026 0.006 (0.804, 0.909)
RNL 0.900 0.015 0.003 (0.867, 0.927)
RNH 0.884 0.012 0.003 (0.858, 0.907)

(b) DPP model
UCL 0.870 0.006 0.003 (0.857, 0.883)
UCH 0.870 0.007 0.003 (0.855, 0.882)
UIL 0.870 0.006 0.003 (0.857, 0.881)
UIH 0.872 0.010 0.003 (0.858, 0.900)
UNL 0.863 0.015 0.004 (0.821, 0.881)
UNH 0.868 0.012 0.004 (0.837, 0.885)
RIL 0.870 0.013 0.003 (0.840, 0.898)
RIH 0.882 0.020 0.005 (0.826, 0.913)
RNL 0.891 0.014 0.003 (0.866, 0.922)
RNH 0.882 0.012 0.003 (0.862, 0.906)

Note: δ = Pr (r = 1|p, π0, π1) = (1 − p)π0 + pπ1.

has estimated probability 0.524 as compared with 0.266 for the p̂
(rb)
k . Notice that p̂

(e)
1 = 0.000

while p̂
(rb)
1 = 0.225, a substantial difference, as we remarked above.

We have looked at the clustering of the domains further. Of the 1000 iterates from the
griddy Gibbs sampler, 524 indicate that there are two clusters of domains. Of these, 294
have two clusters: the first cluster is (UCL, UCH, UIL, UIH, UNL, UNH) and the second
cluster is (RIH, RNL, RNH). We have considered posterior inference for p∗

1 and p∗
2 (i.e., the

proportion of households with at least one crime) conditional on these two clusters. For p∗
1

and p∗
2 respectively, the PM (standard deviations) are 0.269 (0.047) and 0.193 (0.041), and

the 95% credible intervals are (0.205, 0.327) and (0.112, 0.249). See the PM in Table II. We
also consider the three clusters. The number of iterates in which there are three clusters is
270; of these only 60 iterates have the clusters (UCL, UCH, UIL, UIH, UNL, UNH), (RIH,
RNL) and (RNH). Thus, this is a potentially useful methodology that can be used to cluster
the domains.

We have considered sensitivity to inference for the specification of κ0 in the prior density
for α. We consider five choices of κ0 (i.e., κ0 = 0.001, 0.01, 1.00, 100, 1000). The response
probabilities δi are clearly nonsensitive to the choice of κ0; see Table V(b). There is some sen-
sitivity to inference about the pi , but this is reasonably small (see Tab. V(a)). But in Table IV,
inference about k is sensitive to the choice of κ0. For small values of κ0, small values of k are
dominant, and for large values of κ0, large values of k are dominant. Also, note the disparity
between the p

(e)
k and p

(rb)
k for different choices of κ0; but note that κ0 = 0.001 and κ0 = 1000

are two extreme cases.
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TABLE IV Comparison of Probability Mass Functions of k for Various Choices of κ0.

κ0 = 0.001 κ0 = 0.01 κ0 = 1 κ0 = 100 κ0 = 1000

k p̂(e) p̂(rb) p̂(e) p̂(rb) p̂(e) p̂(rb) p̂(e) p̂(rb) p̂(e) p̂(rb)

1 0.037 0.785 0.021 0.668 0.000 0.225 0.000 0.042 0.000 0.020
2 0.866 0.137 0.815 0.202 0.524 0.266 0.157 0.074 0.066 0.033
3 0.072 0.046 0.125 0.075 0.270 0.215 0.133 0.089 0.047 0.038
4 0.020 0.019 0.030 0.031 0.123 0.142 0.105 0.091 0.045 0.038
5 0.004 0.008 0.008 0.013 0.058 0.082 0.100 0.089 0.043 0.037
6 0.001 0.003 0.000 0.006 0.014 0.042 0.080 0.085 0.053 0.038
7 0.000 0.001 0.001 0.003 0.006 0.019 0.064 0.086 0.043 0.044
8 0.000 0.001 0.000 0.001 0.003 0.007 0.083 0.098 0.072 0.063
9 0.000 0.000 0.000 0.000 0.000 0.003 0.124 0.133 0.168 0.149

10 0.000 0.000 0.000 0.000 0.002 0.002 0.154 0.213 0.463 0.539

Note: p̂(e) is the empirical estimator based on the Gibbs iterates and p̂(rb) is the RB estimator.

As a summary, there are differences between the DPP and the baseline models. The PM for
the pi and their PSD under the DPP model are generally larger. It is surprising that inference
for the δi is at least as good for the DPP model as for the baseline model. With respect to the
choice of κ0, inference about the pi is mildly sensitive, inference about the δi is not sensitive,
but inference about k is somewhat sensitive.

TABLE V Comparison of 95% CI of p and δ for Various Choices of κ0.

κ0 = 0.001 κ0 = 0.01 κ0 = 1 κ0 = 100 κ0 = 1000

(a) Proportion p

UCL (0.190, 0.329) (0.207, 0.331) (0.196, 0.327) (0.190, 0.333) (0.191, 0.327)
UCH (0.190, 0.329) (0.207, 0.331) (0.196, 0.327) (0.189, 0.333) (0.184, 0.328)
UIL (0.190, 0.329) (0.207, 0.331) (0.196, 0.329) (0.196, 0.333) (0.196, 0.330)
UIH (0.190, 0.329) (0.207, 0.331) (0.186, 0.327) (0.189, 0.327) (0.184, 0.320)
UNL (0.190, 0.329) (0.207, 0.338) (0.197, 0.365) (0.196, 0.375) (0.199, 0.372)
UNH (0.190, 0.329) (0.207, 0.331) (0.196, 0.342) (0.189, 0.403) (0.185, 0.402)
RIL (0.167, 0.329) (0.188, 0.331) (0.185, 0.331) (0.179, 0.380) (0.155, 0.388)
RIH (0.092, 0.304) (0.115, 0.298) (0.084, 0.265) (0.089, 0.276) (0.081, 0.265)
RNL (0.095, 0.265) (0.116, 0.264) (0.096, 0.248) (0.103, 0.244) (0.103, 0.234)
RNH (0.124, 0.311) (0.129, 0.317) (0.126, 0.312) (0.131, 0.302) (0.144, 0.289)

(b) Response rate δ

UCL (0.857, 0.884) (0.859, 0.882) (0.857, 0.883) (0.852, 0.889) (0.851, 0.890)
UCH (0.857, 0.884) (0.859, 0.882) (0.855, 0.882) (0.841, 0.886) (0.839, 0.888)
UIL (0.857, 0.884) (0.859, 0.882) (0.857, 0.881) (0.855, 0.892) (0.853, 0.894)
UIH (0.860, 0.887) (0.859, 0.887) (0.858, 0.900) (0.859, 0.916) (0.862, 0.918)
UNL (0.845, 0.884) (0.833, 0.882) (0.821, 0.881) (0.808, 0.876) (0.806, 0.876)
UNH (0.857, 0.887) (0.850, 0.882) (0.837, 0.885) (0.801, 0.901) (0.798, 0.907)
RIL (0.857, 0.890) (0.852, 0.891) (0.840, 0.898) (0.812, 0.910) (0.804, 0.922)
RIH (0.851, 0.912) (0.852, 0.911) (0.826, 0.913) (0.808, 0.911) (0.807, 0.909)
RNL (0.863, 0.915) (0.869, 0.917) (0.866, 0.922) (0.867, 0.927) (0.869, 0.926)
RNH (0.862, 0.903) (0.866, 0.904) (0.862, 0.906) (0.860, 0.908) (0.859, 0.907)

Note: p = Pr(y = 1|p) where y = 1 for a victimized household and 0 otherwise; δ = Pr(r = 1 | p, π0, π1) = (1 −
p)π0 + pπ1.
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5 CONCLUDING REMARKS

Our methodology on nonignorable nonresponse has been motivated by the NCS data which
appear to have two groups of domains. To this end, we have made several contributions. First,
we have developed the appropriate methodology for nonignorable nonresponse binary data
under the DPP. This is good for survey samplers who generally assume that small area effects
follow a common parametric distribution. Second, we have discussed the identifiability issue in
nonignorable nonresponse models. Third, we have shown how to fit the model using MCMC
methods. Fourth, we have shown that an alternative prior specification for α can be used.
Finally, we have shown that there are benefits to be gained by using the DPP model over its
baseline counterpart.

For the NCS data, the DPP model can help to identify the two groups of domains. With
the baseline model, this is not so clear; there is no mechanism to tell how many groups there
are. We found that there are differences between these models for estimating the pi and δi .
As expected, there is an increased variability when the DPP model is used over the baseline
model, although surprisingly the DPP model is at least as precise for estimating the δi .

Also, we have found that the prior density for α (i.e., α ∼ Gamma(a, b)), used by Escobar
and West (1995), is sensitive to the choice of a and b. This prior is attractive because of
its simplicity (i.e., it is straight forward to draw a sample from it). Instead, we have used
the shrinkage prior which has no moments (i.e., almost noniformative) but is proper. However,
the conditional posterior density for α is not simple, and we have shown how to draw a sample
from it using a grid method. We have used the shrinkage prior for α (i.e., p(α) = κ0/(κ0 + α)2,
κ0, α > 0). An important issue about this prior density is that one needs to choose κ0. We have
found that inference about k is sensitive to the choice of κ0, inference for p is mildly sensitive
and inference about δ is not sensitive.

One interesting problem can be addressed in which there may be prior information about
the number of groups of domains. With the present theory on the DPP, this is not a simple
matter. However, it may be possible to control the number of groups that are formed using
appropriate prior information about the parameter α of the DPP (see the discussion in Escobar
and West, 1995). One can easily guess k, say k = k0, by inspection of the data or preferably
by prior elicitation, and use this information to improve the prior specification of α instead of
perturbing the DPP directly. This is a possible avenue for future research.

In small area estimation, our nonparametric Bayesian approach to nonignorable nonresponse
is novel. Our procedure will be more beneficial in applications with many areas.
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APPENDIX A

Conditional Posterior Density of p(α|k) (Escobar and West, 1995)

For n areas using results in Antoniak (1974), Escobar and West (1995) presented the proba-
bility mass function

p(k|α) = sn(k)
αk�(α)

�(α + n)
, k = 1, . . . , n

where sn(k), not involving α, are the absolute values of the Sterling numbers of the first
kind. These Sterling numbers are given by the coefficients of the (n − 1) degree polynomial∏n−1

k=0(x − k) where
∏n−1

k=0(x − k) ≡ ∑n
k=0 sn(k)xk .
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Letting Dn represent a configuration of the data into k groups, Escobar and West (1995)
argued that

p(α | k, θ , Dn) = p(α|k),

where clearly p(α|k) ∝ p(α)p(k|α) and p(α) is the prior density for α. They took α ∼ G(a, b)

and specified a = 2 and b = 4 for the astronomy data studied by Roeder (1990).
Finally, introducing the latent variable γ , where

γ | α, k ∼ Beta(α + 1, n).

Escobar and West (1995) showed that

α | γ, k ∼ λγ,kG{a + k, b − log(γ )} + (1 − λγ,k)G{a + k − 1, b − log(γ )},

where λγ,k = (a + k − 1)/{a + k − 1 + n(b − log(γ ))}.




