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ABSTRACT
Small area estimation is becoming increasingly popular for survey statisticians. One very important program
is Small Area Income and Poverty Estimation undertaken by the United States Bureau of the Census, which
aims at providing estimates related to income and poverty based on American Community Survey data at
the state level and even at lower levels of geography. This article introduces global–local (GL) shrinkage
priors for random effects in small area estimation to capture wide area level variation when the number
of small areas is very large. These priors employ two levels of parameters, global and local parameters, to
express variances of area-specific random effects so that both small and large random effects can be cap-
tured properly. We show via simulations and data analysis that use of the GL priors can improve estimation
results in most cases. Supplementary materials for this article, including a standardized description of the
materials available for reproducing the work, are available as an online supplement.

1. Introduction

The demand for small area estimates is increasingly being
felt both in the public and private sectors for policy formula-
tion. One very important current day program undertaken by
the United States Bureau of the Census is Small Area Income
and Poverty Estimation. This program is targeted to provide
estimates related to income and poverty based on American
Community Survey (ACS) data at the state level and even at
lower levels of geography such as counties, census tracts, and
school districts. Examples include estimates of the total as well
as the proportion of 5–17 years old children under poverty in
such local areas.

Direct estimates for small areas are usually accompaniedwith
large standard errors and coefficients of variation due to small
sample sizes. This necessitates the use of models to link different
small areas. Small area models are usually classified into area
level models and unit level models. In this article, we focus on
area level models. Some examples of discussions on unit level
models are Battese, Harter, and Fuller (1988), Datta and Ghosh
(1991), Tarozzi and Deaton (2009), and Rao andMolina (2015).

The classic area level model is due to Fay and Herriot (1979).
It is a mixed effect model with known sampling variances, not
necessarily all equal, and independent normal area-specific ran-
dom effects with zero means and a common unknown variance.
The simplicity and interpretability of the resulting small area
estimates have made this model most popular in the small area
literature with multiple applications.

Despite its wide popularity, questions have been raised
regarding blanket application of the Fay–Herriot (FH) model
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for all kinds of data. Up until now, the most common chal-
lenge to this model is its lack of robustness. The normality and
homoscedasticity of random effects is always an unverifiable
assumption, and no wonder, this assumption often fails in prac-
tice. There are several papers that dispensed with the assump-
tion of normality of the random effects. Among others, we refer
to Datta and Lahiri (1995), Lahiri and Rao (1995), Jiang, Lahiri,
andWan (2002), Datta, Rao, and Smith (2005), Jiang and Lahiri
(2006a, 2006b), Li and Lahiri (2007), and Fabrizi and Trivisano
(2010).

A different but equally pertinent issue has recently surfaced
in the small area literature. This concerns the need for random
effects in all small area problems, namely, whether even fixed
effects models would be adequate for small area estimation in
certain situations. Datta, Hall, and Mandal (2011), henceforth
referred to as DHM, were the first to address this problem. They
suggested a test-based approachwhere the null hypothesis is that
the common random effect variance is zero. The test was based
on a discrepancy statisticmeasuring the lack of fit of themultiple
regressionmodel of small areameans on certain covariates. This
work spurred further research with the same theme. Among
others, one may refer to Molina, Nandram, and Rao (2014) and
Morales, Pagliarella, and Salvatore (2015).

The DHM procedure performs well when the number of
small areas is moderately large, but, as it often happens in prac-
tice, the number of small areas is very large, for example, when
one considers all counties in the United States. In such situa-
tions, even if the regression estimates can describe the small area
means very well inmost of the small areas, the null hypothesis of
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no random effects is still very likely to be rejected, primarily due
to the significant departure of direct estimates from the regres-
sion estimates caused by a few large residuals. This problem
was first realized by Datta and Mandal (2015). They proposed
to model random effects through a mixture of a point mass at
zero and a zero-mean normal distribution. Such priors belong to
the general class of spike-and-slab priors. The point mass part is
suitable for areas where regression estimates are adequate, while
the normal distribution part models random effects when the
regressionmodel as such is not adequate. Essentially, this model
still assumes normally distributed random effects, but the vari-
ance can be either zero or a positive value.

In contrast to the spike-and-slab priors of Datta and Mandal
(2015), the present article considers global–local (GL) shrink-
age priors, which meet the same objective and beyond. In par-
ticular, these priors allow area-specific variance components for
random effects. In areas where random effects are not needed,
the variance component can be very small, while, in areas where
regression estimates are not adequate, the variance component
can be large so that random effects play a role. The proposed
model is, especially advantageous when the number of small
areas is very large, for example, when the small areas constitute
3000 plus counties of the United States, and a wide variation in
area level effects are expected.

The GL shrinkage priors acquire the feature mentioned
above by employing two levels of parameters to express prior
variances of normally distributed random effects. The first level
consists of the local shrinkage parameters, which are distinct
for each area, while the other, the global shrinkage parameter, is
common for all random effects. The global shrinkage parameter
causes shrinkage on all random effects (global shrinkage effect)
to capture the small random effects, while the local shrinkage
parameters try to neutralize it for areas that need large random
effects. The degree of this neutralizing effects is closely related
with the tail of the priors on the local parameters. If it is appro-
priately heavy-tailed, both small and large random effects can
be well-captured.

The GL shrinkage priors were introduced in a series of
articles Carvalho, Polson, and Scott (2010), Polson and Scott
(2009, 2010, 2012a, 2012b), and Scott (2011). They have been
extended into a richer class. Some recent inventions are the
three parameter beta normal (TPBN) priors (Armagan, Clyde,
and Dunson 2011) and the generalized double Pareto (GDP)
priors (Armagan, Dunson, and Lee 2012). The former itself is
a big class and includes the now famous horseshoe (HS) priors
(Carvalho, Polson, and Scott 2010), the normal-exponential-
gamma (NEG) priors (Griffin and Brown 2005), and the
Strawderman–Berger (SB) priors (Strawderman 1971; Berger
1980). In multiple testing (Datta and Ghosh 2013; Ghosh et al.
2016), and other contexts where the GL shrinkage priors have
had success, they are often further classified into polynomial-
tailed priors and exponential-tailed priors according to the tails
of the priors of the local parameters. The former subclass is
often preferred in these contexts because it enjoys asymptotic
optimality when the underlying data are generated from the
spike-and-slab model. The present article distinguishes from
others on the GL shrinkage priors in that we do not treat them
simply as an approximation of the spike-and-slab priors. We
show that both subclasses of priors are useful depending on the

data and that the deviance information criterion (DIC) can be
used to choose an appropriate one.

The outline of the remaining sections is as follows. In Section
2, we introduce the GL shrinkage priors in the area level model
and explain their workingmechanism to capture both small and
large random effects. Section 3 presents a Gibbs sampler to per-
form Bayesian computation for the proposed model with some
special choice of priors. In Section 4, we compare the perfor-
mance of different models and priors through simulation in var-
ious situations. Some guidance of prior selection is provided in
Section 5. Two real-data analyses are performed in Section 6 and
we conclude with a discussion in Section 7.

2. Model

We begin with the standard area level model

yi = θi + ei, θi = xTi β + ui, i = 1, . . . ,m, (1)

where yi is the direct estimate for small area i, xi is a
p-dimensional covariate vector, and β is a p-dimensional vec-
tor of regression coefficients. We assume that p < m and X =
(x1, . . . , xm)T has rank p. The sampling error vector e =
(e1, . . . , em)T and the random effect vector u = (u1, . . . , um)T
are assumed to be independent. The elements of e are indepen-
dent and each ei follows a normal distribution with mean 0 and
varianceVi. Here,Vi is assumed to be known to avoid noniden-
tifiability and typically it can be obtained by modification of the
standard survey estimate using generalized variance function of
Fay and Graubard (2001).

The random effect ui in (1) captures the variation of small
areamean θi that cannot be explained by the covariates xi. In the
FH model, the random effects are independent and identically
distributed normal random variables

ui | σ 2
FH

iid∼ N(0, σ 2
FH), i = 1, . . . ,m. (2)

In a hierarchical Bayesian formulation, priors are put on β and
σ 2
FH. Usually, π(β, σ

2
FH) ∝ π(σ 2

FH) (Datta et al. 1996; You and
Chapman 2006). The common variance σ 2

FH for all random
effects leads to the same area level variability across small areas,
which is hardly realized in practice. For example, for county level
estimation, counties usually differ widely in their variability.

The spike-and-slab prior of random effects in Datta and
Mandal (2015), on the other hand, is given by

ui = δivi, i = 1, . . . ,m, (3)

where δ1, . . . , δm are independent and identically distributed
Bernoulli random variables with P(δi = 1) = γ and vi ∼
N(0, σ 2

DM) for i = 1, . . . ,m, independently. With this formula-
tion, a random effect is included for small area i only when δi =
1. Essentially, the Datta–Mandal (DM) model uses two vari-
ance parameters for the random effects. It is zero for the areas
where random effects are not needed, and σ 2

DM for all the small
areas that need random effects. Independent priors are further
assumed for β, σ 2

DM, and γ , with an improper uniform prior
on β, an inverse gamma (IG) prior on σ 2

DM, and a beta prior,
Beta(a, b), on γ . If one suspects most of the local areas to have
insignificant effects, then one chooses a and b in such a way that
a/b is small.
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Table . Some popular priors for local parameters.

Name π
λ2 (x) Class

Laplace exp(−x) E
Normal gamma xa−1 exp(−x) E
Horseshoe x−1/2(1 + x)−1 P
Strawderman–Berger (1 + x)−3/2 P
Normal exponential gamma (1 + x)−1−b P
Three parameter beta normal xa−1(1 + x)−a−b P
Generalized double Pareto

∫∞
0 yα+1 exp(−xy2/2 − ηy)dy P

NOTE: The first column gives the names of priors of ui marginalized over λ2i . The
second column lists the corresponding priors of the local parameters λ2i . In the
third column, E and P stand for exponential-tailed priors and polynomial-tailed
priors, respectively.

Unlike the FH model and the DM model, we use the
GL shrinkage priors to model the random effects u1, . . . , um.
Specifically,

ui | λ2i , τ 2 ∼ N(0, λ2i τ
2), i = 1, . . . ,m, (4)

and the joint prior of β, τ 2, and λ2 = (λ21, . . . , λ
2
m)

T is

π(β, τ 2,λ2) ∝ πτ 2 (τ
2)

m∏
i=1

πλ2
(
λ2i
)
. (5)

In the GL model (4), the variance parameters of random
effects are area-specific. For each small area, it is expressed as
the multiplication of a local parameter λ2i and a global parame-
ter τ 2, characterizing the area-specific and overall variability of
the random effects, respectively. Table 1 lists some of the popular
priors for the local parameters used in other contexts. Among
them, the Laplace (LA) prior is a special case of the normal-
gamma (NG) priors (Fruehwirth-Schnatter and Wagner 2011;
Griffin and Brown 2010) with a = 1. The HS, SB, and NEG pri-
ors are special cases of the TPBN priors. Despite their distinct
forms, these GL shrinkage priors possess a common feature, the
ability to assign nontrivial probability mass both near zero and
in the tail, which enables our GL model to capture both small
and large random effects based on data. To see this, first note
that given the local and global parameters, the conditional pos-
terior mean of the small area mean θi shrinks the direct estimate
yi toward the synthetic regression estimate xTi β as

E(θi | β,λ2, τ 2, y) = yi − BGL,i
(
yi − xTi β

)
, (6)

where BGL,i = Vi/(Vi + λ2i τ
2) is called a shrinkage factor. A

larger (smaller) shrinkage factor causes more (less) shrinkage
and produces an estimate closer to the synthetic estimate (direct
estimate).

Theorem 2.1. Suppose πλ2 (λ2i ) is either exp(−λ2i ) or propor-
tional to λa−1

i (1 + λ2i )
−a−b, or equivalently, either a LA prior or

a TPBN prior is assumed for random effects. For any ε ∈ (0, 1),
if τ 2 → 0

P(BGL,i < ε | τ 2,β, yi) → 0. (7)

More specifically, P(BGL,i < ε | τ 2,β, yi) � τ 2b if πλ2 (λ2i ) ∝
(λ2i )

a−1(1 + λ2i )
−a−b and P(BGL,i < ε | τ 2,β, yi) � exp

(−Vi(1−ε)
ετ 2

) if πλ2 (λ2i ) = exp(−λ2i ). On the other hand, if
|yi − xTi β| → ∞,

P(BGL,i > ε | τ 2,β, yi) → 0. (8)

We write f1(τ 2) � f2(τ 2) as τ 2 → 0 if there exist con-
stants C1 and C2 such that C1 ≤ lim infτ→0 f1(τ 2)/ f2(τ 2) ≤
lim supτ→0 f1(τ 2)/ f2(τ 2) ≤ C2.

Proof. See Appendix. �

The first part of Theorem 2.1 shows that if the global param-
eter is small, then the posterior distribution of shrinkage factor
BGL,i will concentrate near one and the posterior mean of the
small area mean will be close to the synthetic estimate. There-
fore, if the covariates can explain the small area means well in
most of the areas, we would want to have a small τ 2 so that the
posterior estimate of θi in these areas can be shrunk enough
toward the synthetic estimate. It seems that a small τ 2 imposes
strong shrinkage even for the areas where synthetic estimates are
not good enough, but the second part of Theorem 2.1 demon-
strates that this shrinkage can be offset if there is a large discrep-
ancy between the direct estimate and the synthetic estimate. The
interaction of the global shrinkage effect and the offset effect
determines the total amount of shrinkage for each small area.
This feature of the GL shrinkage priors resembles the working
mechanism of the DM model. As pointed out by Datta and
Mandal (2015), the conditional posterior mean of θi can be
similarly expressed as a shrinkage estimate and the shrinkage
factor is

BDM,i = (1 − γ̃i)σ
2
DM +Vi

σ 2
DM +Vi

, (9)

where

γ̃i = γ

γ + (1 − γ )

√
σ 2
DM+Vi
Vi

exp
{
− 1

2
(yi−xT

i β)2σ 2
DM

Vi(σ
2
DM+Vi )

} . (10)

The prior probability of a random effect being zero, γ , plays
a similar role as our global parameter τ 2. If γ is close to zero,
the shrinkage factor will be close to 1, causing a shrinkage of
the direct estimate toward the synthetic estimate for all small
areas. However, if |yi − xTi β| is large enough tomake the second
term in the denominator of γ̃i small compared with γ , then the
shrinkage factor can be much smaller than one.

In our GL model, given |yi − xTi β| and τ 2, the extent of the
offset effects is closely related with the heaviness of the tails of
the priors for the local parameters. In general, a heavier tail has
a stronger offset effect, producing smaller shrinkage factors and
estimates closer to the direct estimates. Theorem 2.1 shows that
the rate of P(BGL,i < ε|τ 2,β, yi) going to zero is polynomial if
TPBN priors are used for local parameters and it is exponential
if LA priors are used.Hence, given |yi − xTi β| and τ 2, the shrink-
age factors under LA priors are stochastically larger than those
under TPBN priors thus causing more shrinkage.

Another way to look at the GL model is to treat the local
parameters, λ2i , as latent variables. After integrating them out,
the random effects are independent heavy-tailed random vari-
ables with a common scale parameter. From this point of view,
the local parameters help bring in extra variability for the ran-
dom effects compared with the FH model and the amount of
extra variability is closely related to the tail behavior of the dis-
tribution of the local parameters.

We have seen that the size of the global parameter is crucial
to the level of global shrinkage.We put a priorπτ 2 on τ 2 so that it
can be automatically learned from the data. Weakly informative
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IG distributions have been widely used for variance param-
eters because of its conjugacy. Recently, Gelman (2006) and
Polson and Scott (2012b) advocated half-Cauchy priors as
a default choice for a top-level scale parameter in Gaussian
hierarchical models because of its excellent risk properties. If
an half-Cauchy prior is put on τ , then we will call the resulting
prior on τ 2 the squared half-Cauchy (SHC) prior and its density
is proportional to (τ 2)−1/2(σ 2 + τ 2)−1, where σ is a scale
parameter. Both IG priors and SHC priors are considered for
the global parameter τ 2 in our context and their performance
is compared in Section 4.

3. Computation

Let y = (y1, . . . , ym)T , θ = (θ1, . . . , θm)
T , and V =

diag(V1, . . . ,Vm). According to (1), (4), and (5), the joint
posterior density of the GL model is

π(β, u,λ2, τ 2 | y) ∝ exp

[
−1
2

m∑
i=1

(yi − xTi β − ui)2

Vi

]

×
m∏
i=1

{
πλ2

(
λ2i
) (
λ2i τ

2)− 1
2 exp

(
− u2i
2λ2i τ 2

)}
πτ 2 (τ

2). (11)

Although we assume an improper uniform prior for β, the inte-
gration of the right-hand side of (11) with respect toβ, u,λ2, and
τ 2 can still be finite with some constraints in πλ2 and πτ 2 . That
is, the posterior distribution for our proposed model is proper
under some conditions.

Theorem 3.1. The posterior distribution resulting from the GL
shrinkage prior is proper if bothπλ2 (λ2i ) andπτ 2 (τ 2) are proper.

Proof. See Appendix. �

All the priors for the local parameters listed in Table 1 are
proper. Also, both IG and SHC priors are proper. Therefore, the
propriety of posteriors for the GLmodel is guaranteed with such
choices of priors.

A Gibbs sampler (Gelfand and Smith 1990) can be designed
to sample from the posterior density (11). It is easy to find out
the full conditionals as

1. ui | β,λ2, τ 2, y ind∼ N((1 − BGL,i)(yi − xTi β),

(1 − BGL,i)Vi);
2. β | u,λ2, τ 2, y ∼ N((

∑m
i=1V

−1
i xixTi )−1(

∑m
i=1(yi −

ui)V−1
i xi), (

∑m
i=1V

−1
i xixTi )−1);

3. π(τ 2 | u,β,λ2, y) ∝ (τ 2)−
m
2 exp(− 1

2τ 2
∑m

i=1 u
2
i /λ

2
i )

πτ 2 (τ
2);

4. π(λ2i | u,β, τ 2, y) ∝ (λ2i )
−1/2exp[−u2i /(2λ2i τ 2)]πλ2 (λ2i ),

i = 1, . . . ,m.
Samples of u and β can be drawn directly from 1 and 2.

To draw samples of λ2 and τ 2, one needs to use a Metropolis–
Hastings step in general. However, in some special cases, 3 and 4
can be expressed as the densities of well-known distributions, so
samples of τ 2 and λ2i can be drawn more directly. Specifically, if
an exponential, IG or aTPBprior is used for the local parameters
λ21, . . . , λ

2
m and/or the global parameter τ 2, the corresponding

conditional densities take a very simple form. We demonstrate
this only for λ2i . The corresponding results for τ 2 are very simi-
lar, needing only minor modifications.

Suppose first one uses the exponential prior πλ2 (λ2i ) ∝
exp(−λ2i ). Then, π(λ2i | u,β, τ 2, y) ∝ (λ2i )

−1/2exp[−u2i /

(2λ2i τ 2)− λ2i ]. Recalling the definition of a general-
ized inverse Gaussian (GIG) density function f (x) ∝
xλ−1 exp(−χ/(2x)− ψx/2) labeled as GIG(λ, χ,ψ), this
conditional turns out to be GIG(1/2, u2i /τ 2, 2). Also, in this
case, λ−2

i has a straight inverse Gaussian distribution with mean
(2τ 2/u2i )1/2 and shape parameter 2. If instead one uses an IG
prior with shape parameter s/2 and rate parameter t/2, then
π(λ2i | u,β, τ 2, y) ∝ (λ2i )

−(s+1)/2−1exp[−(u2i / τ 2 + t ) / (2λ2i )],
which is IG with scale parameter (s + 1)/2 and rate parameter
(u2i /τ 2 + t )/2. Finally, for a TPB prior πλ2 (λ2i ) ∝ (λ2i )

a−1(1 +
λ2i )

−a−b, introducing a latent parameter ξi with π(λ2i |ξi) ∝
(λ2i )

a−1ξ ai exp(−ξiλ2i ) and π(ξi) ∝ ξ b−1
i exp(−ξi), one gets

π(λ2i | u, β, τ 2, y) ∝ (λ2i )
a−1/2exp[−u2i /(2λ2i τ 2)− ξiλ

2
i ],

which is GIG(a − 1/2, u2i /τ 2, 2ξi), and π(ξi | u,β, τ 2,λ2, y) ∝
ξ a+b−1
i exp[−ξi(1 + λ2i )], which is a gamma distribution with
shape parameter a + b and rate parameter λ2i + 1.

With an IG prior with shape c and rate d, the condi-
tional posterior distribution of the global parameter τ 2 is an
IG whose shape parameter is m/2 + c and rate parameter is∑m

i=1 u
2
i /(2λ2i )+ d. To make sure the posterior distribution is

not significantly affected by the prior, c and d should be much
smaller than m/2 and

∑m
i=1 u

2
i /(2λ2i ), respectively. This is rel-

atively easy to achieve for c since m/2 is known and usually
large. For d, in practice, one can try a few test runs with differ-
ent choices of d and choose the one that is small enough. For the
two real-data examples presented in Section 6, we have checked
that c = d = 10−10 is small enough and a smaller value does not
change results significantly. We use this choice in the simulation
as well.

4. Simulations

In this section, we compare the performance of the FH model,
the DM model, and our GL model via simulation studies. The
data generation settings are adopted from Chakraborty, Datta,
and Mandal (2016). The number of small areas, m, is set to be
100, 500, or 1000. For each choice ofm, we generated data from
model (1). The design matrix X includes a column of ones and
one explanatory variable sampled fromN(10, 2). The same X is
used to simulate data for a given m. The coefficient vector β is
fixed at (20, 1)T . The variances of the errors,Vi, are chosen from
the set {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} and each value in the
set is allocated to the same number of small areas.

Five settings are considered for the random effects ui,
i = 1, . . . ,m

ui ∼ N(0, 1), (12)
ui ∼ δiN(0, 52), δi ∼ Bern(0.2), (13)
ui ∼ δiN(0, 52)+ (1 − δi)N(0, 12), (14)
ui ∼ N(0, σ 2

i ), (15)
ui ∼ t3. (16)

Following Chakraborty, Datta, and Mandal (2016), in the nor-
mal mixtures setup (14), we set δi = 1 for each i that is a mul-
tiple of 5 and keep rest of the δi = 0. In the multivariance setup
(15), the variances of random effects σ 2

i are sampled with equal
proportion from the set {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}.

By generating random effects from (12), we assume the true
underlying model of the data is the FH model. Similarly, when
the random effects are generated from (13), the true underlying
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Table . Correlations between covariates and true small area means in different
simulation settings.

m Normal Dirac–Normal Normal mixture Multivariance T

 . . . . .
 . . . . .
 . . . . .

model is the DMmodel. The other three settings (14)–(16) vio-
late the assumptions of the FH, the DM, and the GLmodels. For
each of the five settings of random effects and each choice of the
number of small areas, 100 datasets are generated. Table 2 gives
the average of correlations between covariates and true small
areameans over the 100 datasets in different simulation settings.

For each dataset, we fit the FH model, the DM model, and
our GL model. In the FH model, an improper uniform prior is
assumed for σ 2

FH to be consistent with Datta andMandal (2015).
This prior is also used in Morris and Tang (2011) and the pro-
priety of the resulting posterior is well-known (Berger 2013).
Some other choices, such as improper uniform priors for σFH
and IG priors for σ 2

FH, also exist in literature. Our exploration
shows that results with various choices of π(σ 2

FH) are not signif-
icantly different. For the DMmodel, our prior specifications are
the same as those in Datta and Mandal (2015), where γ has a
Beta(1, 4) prior, σ 2

DM has an IG distribution with mean V̄ and
variance V̄ 2, and V̄ = 1

m
∑m

i=1Vi. For the GL model, we con-
sidered various choices for πλ2 described in Table 1. Among
them, HS, SB, NEG (b = 0.75), and GDP (α = η = 1) are cho-
sen as examples of polynomial-tailed priors, while LA and NG
(a = 0.5) are examples of exponential-tailed priors. For the pri-
ors of the global parameter, we considered an IG prior with both
shape and rate parameters being 10−10 and a SHC prior with
scale parameter being 1.

For each fit, we estimate θi by its posterior mean and eval-
uate the fit by four deviance measures, average absolute devia-
tion (AAD), average squared deviation (ASD), average absolute
relative deviation (ARB), and average squared relative deviation
(ASRB), which are defined as follows:

AAD = 1
m

m∑
i=1

|θ̂i − θi|, ASD = 1
m

m∑
i=1

(θ̂i − θi)
2,

ARB = 1
m

m∑
i=1

|(θ̂i − θi)/θi|, ASRB = 1
m

m∑
i=1

(θ̂i − θi)
2/θ2i .

(17)

The empirical coverage rate of 95% credible interval of θi is also
used to evaluate the interval estimates. For a given situation, we
report the median of the five measures over the 100 datasets.

First, we compare the performance of our GL model with
different priors for the global parameter τ 2. Figure 1 presents
the results for the GL model with HS or LA priors for the local
parameters and IG or SHC priors for the global parameters. It is
clear that the performance of the GL models is mostly governed
by the priors on the local parameters. For a given choice of πλ2 ,
the four deviation measures and the empirical coverage rate the
credible intervals from GL models with different choices of pri-
ors on τ 2 vary only slightly, especially when the number of small
areas is large. We will restrict our discussion on models with IG
priors for the global parameter in the remainder of the article.

Next, we compare the GL model with the FH model and the
DMmodel. The results are summarized in Figure 2. The first two
columns in the figure show that the FHmodel performs the best
when the random effects are generated from the normal setting
(12) and the DM model performs the best when the random
effects are generated from the dirac–normal mixture setting
(13). This is not a surprise since the fitting model matches the
underlying data generating model. Even so, the coverage rate
for the DM model is not as good as those for GL models in
the second column. When the random effects are generated
from the other three settings, although the DMmodel performs
much better than the FH model in terms of the four deviation
measures, the empirical coverage rate of the 95% credible inter-
vals is always lower than the nominal rate, especially when m
is large. In these three settings, the model that has the smallest
deviation measures is always a GL model. As for which GL
model gives the best performance, it depends on the data gen-
erating model. In general, the GL models with the same type of
priors for local parameters perform similarly. The exponential-
tailed priors are better in settings (12), (15), and (16), while the
polynomial-tailed priors are better in settings (13) and (14).

To take a closer look at the results, Figure 3 presents the devi-
ation measure results in settings (13) and (14) stratified by the
type of random effects. For example, for AAD, we compute

AAD0 = 1
m0

∑
{i:δi=0}

|θ̂i − θi|,

and

AAD1 = 1
m1

∑
{i:δi=1}

|θ̂i − θi|,

wheremj is the cardinality of {i : δi = j}, j = 0, 1, AAD0 is the
averaged absolute deviation for estimates of areas with “small”
random effects and AAD1 is the averaged absolute deviation for
estimates of area with “large” random effects. Similar stratifica-
tion can be done for the other three deviation measures.

Figure 3 shows that polynomial and exponential GL mod-
els are excellent at capturing small and large random effects,
respectively. Even when the data generating model is DM, GL
models with exponential-tailed priors in general perform better
than DM in estimating small area means for areas with large
random effects. In terms of estimating means for areas with
small random effects, the DM model is more sensitive to the
true distributions of random effects than GL models. When the
small random effects are normally distributed instead of exact
zero, DM model loses its advantage in capturing small random
effects over GL models with polynomial-tailed priors.

According to Figure 3, GL models with exponential-tailed
priors consistently yield smaller deviation measures than the
polynomial-tailed priors for areas with large random effects,
whereas the reverse is true for areas with small random effects.
Note that this does not contradict the observations we have
made in Theorem 2.1 that the LA prior shrinks more than the
TPBN priors since there the conclusions are made conditional
on τ 2 while here inference about τ 2 is based on its posterior dis-
tribution. Table 3 gives medians of posterior means of τ 2 over
100 simulated datasets for the GL models with the HS prior and
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Figure . Deviation measures and coverage rates for GL models with different choices of priors for the global parameter. Note that the ranges of vertical axes are different
across plots.

Table . Medians of posterior samplemeans of τ 2 over  datasets for the GLmodels with the HS prior and the LA prior for local parameters and the IG prior for the global
parameter.

Dirac–Normal
Normal

Normal γ = 0.05 γ = 0.10 γ = 0.20 γ = 0.50 mixture Multivar T

HS . . . . . . . .
LA . . . . . . . .
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Figure . Deviation measures and coverage rates of % credible intervals for various models. Note that the ranges of vertical axes are different across plots.

the LA prior. The GL model with the LA prior consistently pro-
duces larger estimates of τ 2 than theGLmodelwith theHSprior.
This is because the relatively light exponential tail of the LA
prior induces weaker offset effect. To remedy the extra shrink-
age caused by this, a weaker global shrinkage effect (larger τ 2) is
needed.

Table 3 also demonstrates the role of τ 2 in controlling the
overall shrinkage level. In dirac–normal mixture settings, for
both HS and LA priors, the estimates of τ 2 show an increas-
ing trend as the proportion of nonzero random effects increases.
Although the normal mixture setting has the same percentage
and distribution of large random effects as the dirac–normal
mixture setting with γ = 0.2, the global parameter is about

twice as large. This happens because small random effects are
nonzero in the former setting and hence less global shrinkage is
needed.

Another thing to be noted is that in the dirac–normalmixture
setting, the DM model and the GL models with polynomial-
tailed priors improved estimation by a large amount, while the
improvement in other settings is not as large as in this setting.
This difference is mainly due to the intrinsic features of the
data generating models. The random effects setting (13) is more
different from the FH model than the other settings because
the majority of the random effects it generates are exact zeros.
If the fitting model can grant exact zero random effects (DM
model) or shrink small random effects aggressively to zeros
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Figure . Stratified deviation measures for dirac–normal mixture model and normal mixture normal. Note that the ranges of vertical axes are different across plots.

(GL models with polynomial-tailed priors), then estimation
performance will be greatly improved.

5. Prior Selection

We have seen from the simulation study that priors for random
effects work differently in different scenarios and that there is no
universal prior that works best in every situation. In practice, it
is almost impossible to know the underlying true model, so how
to choose an appropriate prior for random effects based on the
data is an important question.

Among many other criteria for Bayesian model selection or
comparison, we use the DIC proposed by Spiegelhalter et al.
(2002) because of its simplicity and good empirical performance
in our simulation studies. Similar to many other information
criteria, DIC compares models by considering both goodness
of fit and model complexity. Specifically, for a model with
parameter θ ,

DIC = D(θ̄)+ 2pD,

where pD = D̄ − D(θ̄)measures the model complexity, D(θ̄) is
the deviance of the model evaluated at the posterior mean of
model parameter θ, and D̄ is the posterior mean of the deviance.
In our context, D(θ) = ∑m

i=1(yi − θi)
2/Vi. Suppose we have

a posterior sample θ(g) = (θ
(g)
1 , . . . , θ

(g)
m ), g = 1, . . . ,G of the

small area means based on a model aforementioned. The DIC
of this model can be easily estimated by

D̂IC = 2
G

G∑
g=1

m∑
i=1

(yi − θ
(g)
i )2

Vi
−

m∑
i=1

(yi − θ̂i)
2

Vi
,

where θ̂i = 1
G
∑G

g=1 θ
(g)
i is the posterior sample mean of θi.

Among all the candidate models, the one with the smallest DIC
is chosen as the best one to perform final analysis. We applied
this procedure to the simulated datasets in Section 4. The candi-
date models are all the models we have fitted there. The results
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Figure . Deviation measures and coverage rates for the model selected by DIC. Note that the ranges of vertical axes are different across plots.

are presented in Figure 4. We can see from the figure that the
DIC procedure performs very well, especially when the number
of small areas is large. The selected model produces deviation
measures close to the smallest among all candidate models and
better coverage rate than the DMmodel.

6. Data Analyses

6.1. State Level Child Poverty Ratio

In this section, we use the child poverty ratio dataset dis-
cussed by Datta and Mandal (2015) to further demonstrate the
performance our GL model and compare it with the DMmodel

and the FHmodel. The state-level direct estimates of the poverty
ratio for age group 5–17 were obtained from 1999 Current Pop-
ulation Survey (CPS). Besides the intercept, three covariates are
included in the regression part. They are the number of child
exemptions, Internal Revenue Service nonfiler rate, and the
residuals from fitting a model for the 1989 census poverty data
on the previous covariates. As discovered in Datta and Man-
dal (2015), although the discrepancy test proposed in DHM
suggested to include the random effects in the FH Model, the
presence of a random effect is necessary only for Massachusetts.

We applied the FHmodel, the DMmodel, and the GLmodel
to estimate the poverty ratio θi. The prior and hyperparameter
specification of the FH model and the DM model is the same
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Figure . Posterior means of shrinkage coefficients of different states. The four
points on the right denotes the shrinkage factors of Massachusetts.

as in Section 4. For the GL model, we used an IG prior for the
global parameter τ 2 according to our findings in the simulation
study. Both shape and rate parameters of the IG prior is set to
10−10. We considered the HS and LA priors for the choice of
πλ2 . They are chosen as representatives of the polynomial-tailed
and exponential-tailed priors. For each of these models, we esti-
mated θi by its posterior mean.

First, we compare the shrinkage factors of different models.
Recall that a shrinkage factor determines the amount of shrink-
age of the direct estimate yi toward the synthetic estimate xTi β.
The larger the shrinkage factor, themore is the shrinkage toward
the synthetic estimator. For DM model and our GL model, the
shrinkage factors are given in (9) and (6), respectively. For the
FH model, the shrinkage factor is

BFH,i = Vi

σ 2
FH +Vi

.

Figure 5 reports the posterior means of the shrinkage factors of
51 states from various models. For all the states except for Mas-
sachusetts, both the GL model, with either the HS prior or the
LA prior, and the DMmodel havemuch larger shrinkage factors
than those produced by the FH model. The GL model with the
HS prior shrinks the small area means of those states slightly
more than those from the DM model. For Massachusetts, the
DM model and the GL model with the HS prior produces less
shrinkage than the FH model, while the GL model with the LA
prior produces more shrinkage. Given the shrinkage factor Bi
and the covariate coefficients β, the posterior variance of θi is
(1 − Bi)Vi, so one can expect that a more shrunk estimate will
have less uncertainty.

Figure 6 presents the posterior means of random effects
ui obtained from three different models. In general, the pos-
terior means of the random effects from our GL model are
closer to zero than those from the FH model since in the latter
model, the variance parameter is overestimated because Mas-
sachusetts needs a large random effect. For Massachusetts, the
estimated random effect from the FH model is smaller than
that from the GL model with the HS prior, but is larger than

Figure . Posterior means of random effects ui from various models.

that from the GL model with the LA prior. All these observa-
tions demonstrate that when compared with exponential-tailed
priors, polynomial-tailed priors lead to less shrinkage for areas
where synthetic estimates deviate from the direct estimates, but
more shrinkage for areas where synthetic estimates are close to
the direct estimates.

Following Datta and Mandal (2015), we use the ratio bench-
marked state-level poverty ratios obtained from the 2000
census as the true values and compare the estimated θi with
them through the four deviation measures defined in (17). Let
ci, i = 1, . . . , 51, be the state-level poverty ratio estimates for 5–
17 age group obtained from the 2000 census without any adjust-
ment and c′i, i = 1, . . . , 51, be the ratio benchmarked poverty
ratios. Then, c′i = Rci, where R =

∑51
i=1(pop)iyi∑51
i=1(pop)ici

, (pop)i is the esti-
mated population of the 5–17 age group in the ith state and yi is
the direct estimate from 1999 CPS. The deviation measures are
calculated by replacing θi in (17) by c′i and the results are given
in Table 4. As we can see, the GL models perform as well as or
slightly better than the DMmodel, which is favored by the DIC.
If the LA prior is used for the local parameters, the resulting
deviance measurements are the smallest among the models we
considered. The last column of Table 4 gives the number of states
with absolute deviations of the estimated poverty ratios from
the true ratios less than 2%. The deviation for Massachusetts
drops below 2% if the LA prior or the fixed effect model is
used.

Table . Comparison of the estimators obtained from various models.

Estimate AAD ASD ARB ASRB DIC # diff.< 2%

Direct . . . . — 
FH . . . . . 
DM . . . . . 
HS . . . . . 
LA . . . . . 
WLS . . . . — 

NOTE: WLS stands for the weighted least square model with no random effect for
any state.
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Figure . Posterior means of θ .

6.2. County Level Overall Poverty Rates

In this section, we analyze a dataset containing 5-year (2007–
2011) county level pooled ACS estimates of overall poverty
rates along with their associated design-based standard errors
obtained from the “American Fact Finder” website maintained
by the U.S. Census Bureau. There are 3141 counties in this
dataset. Two counties were dropped from the total 3143 coun-
ties ofUnited States (in 2011) due to lack of people in the poverty
universe.

We used foodstamp participation rate and a column of ones
as our covariate variables to produce model-based estimates
of poverty rates. The correlation between foodstamp participa-
tion rate and overall poverty rate is 0.81. We fitted the FH, the
DM, the GL model with the HS prior and the GL model with
the LA prior. The prior for the global parameter is still an IG
with both shape and rate parameter equal to 10−10. The DIC
for these models are −15883, −15863, −15752, and −15947,
respectively. Since theGLmodel with the LAprior has the small-
est DIC, we present the results from this model as our final
analysis.

The estimated poverty rates range from 0.033 (Borden
County, Texas) to 0.479 (Shannon County, South Dakota) and
the median is 0.147. Figure 7 displays a map of the estimated
poverty rates of 3141 counties. The counties with high poverty
rates concentrate in East South Central Division and south part
of South Atlantic Division. In Mississippi, Georgia, Alabama
and New Mexico, 55% or more of their counties have poverty
rates greater than the third quartile (0.189) of the estimated rates
across counties. The counties with low poverty rates concentrate
in New England, Middle Atlantic, north part of South Atlantic
Division, and north part of Mountain Division. In New Hamp-
shire, Connecticut, Rhode Island, Wyoming, Hawaii, and New
Jersey, 70% or more of their counties have poverty rates lower
than the first quartile (0.111).

Figure 8 reports the absolute values of the posterior means of
the random effects. The estimated random effects vary greatly
across counties. In about, 10% of the 3141 counties, the abso-
lute value of the posterior mean of the random effect is less than
0.002, while in another 10% of counties, the value is greater than
0.038. East and west coasts are two regions that contain many
counties with large random effects.

7. Discussion

The article considers GL shrinkage priors for random effects
in the context of small area estimation when the variances of
random effects differ widely. These priors assume the random
effects are scale mixtures of normals. The variance parame-
ters of the normal distributions are expressed as the multiplica-
tion of a local parameter and a global parameter. We find that
the performance of the model is closely related to the tail of
the priors for the local parameters. For a given global param-
eter τ 2, exponential-tailed priors cause more shrinkage than
polynomial-tailed priors. If an IG prior or a SHC prior is put
on τ 2, exponential-tailed priors andpolynomial-tailed priors are
good at estimating large and small random effects, respectively.
Since different priors have their own best working scenarios,
we choose to use DIC to perform model selection because of
its simplicity and good performance in our simulation studies.
Some other model selection criteria, such as Bayes factors (Kass
and Raftery 1995) and predictive Bayesian information criterion
(Ando 2007) can be applied, but they usually require more com-
putational efforts.

Although the GL model uses area-specific variance param-
eters, it does not necessarily lead to over-fitting issues. As we
have mentioned, the local parameters λ2i can be treated as latent
variables. Once they are integrated out, the random effects are
essentially independent heavy-tailed random variables with a
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Figure . Absolute values of posterior means of random effects.

common scale parameter. Therefore, the local parameters just
help bring in extra variability for the random effects compared
with the FH model. On the other hand, we use DIC to choose
models. It also penalizes the model complexity.

Although the GLmodel uses distinct variance parameters for
each small area, the number of parameters sampled in one iter-
ation of Markov chain Monte Carlo (MCMC) algorithm is the
same for both theGLmodel and theDMmodel if latent variables
are not introduced and the order of computational complexity is
of ordermp2. If latent variables are sampled, for example, in the
HS model, the increased computational cost is of order m. The
real-data analysis in this article was performed on an Intel Core
i5 2.6GHz MacBook with 8 GB memory. The time consumed
for fitting the FHmodel, the DMmodel, the GL model with the
HS prior, and the GL model with the LA prior is 21, 45, 57, and
54 sec for the state level data and 91, 1152, 1916, and 1672 sec
for the county level data. We used four covariates in the state
level data analysis and two covariates in the county level data
analysis. If more covariates are considered, the increased com-
putational cost is mainly due to the calculation of X̃

T
(= V− 1

2X )
and (X̃

T
X̃ )−1, which is needed for all the Bayesian models con-

sidered in this article.
When a SHC prior is assumed for τ 2 in Section 4, the scale

parameter σ is fixed at 1. Gelman (2006) recommended a high
but not off value for σ . We explore other values of σ ranging
from 0.1 to 10 and find that the performance of the GL models
on estimating the small area means merely changes.

Future work will direct toward further applications of these
methods, for example, for unit level models as well for handling
of multivariate small area data.

A. Proof of Theorems

A. Proof of Theorem .

Proof. To prove the propriety of the posterior distribution, we need to show
the integral in the right-hand side of (11) with respect to β, u, λ2, and τ 2 is

finite. Since X is of full rank, XTV−1X is nonsingular. Let zi = yi − ui, i =
1, . . . ,m and z = (z1, . . . , zm)T . We have

exp

[
−1
2

m∑
i=1

(
yi − xTi β − ui

)2
Vi

]

= exp
[
−1
2
(z − Xβ)TV−1(z − Xβ)

]
= exp

[
−1
2
(β − β̂)TXTV−1X (β − β̂)− 1

2
zTPz

]
,

where β̂ = (XTV−1X )−1XTV−1z, P = X̃
T
(X̃

T
X̃ )−1X̃ , and X̃

T = V− 1
2 X .

Integrating the right-hand side of (11) with respect to β and noting
exp(− 1

2 z
TPz) ≤ 1, we have

π(u,λ2, τ 2 | y) ≤ C
m∏
i=1

{
πλ2 (λ

2
i )(λ

2
i τ

2)−
1
2 exp

(
− u2i
2λ2i τ 2

)}
πτ 2 (τ

2),

(18)
whereC is a generic positive constant. Integrating out u from (18), we have

π(λ2, τ 2 | y) ≤ Cπτ 2 (τ 2)
m∏
i=1

πλ2 (λ
2
i ).

Therefore, if the priors of τ 2 and λ2i are proper, the integration of the pos-
terior density with respect to β, u, λ2, and τ 2 is finite. �

A. Proof of Theorem .

Proof.

P(BGL,i < ε | β, τ 2, yi)

=
∫∞

Vi
τ2 (

1
ε
−1)

(
Vi + λ2i τ

2)−1/2
πλ2 (λ

2
i ) exp

(
− (yi−xT

i β)2

2(Vi+λ2i τ 2)

)
dλ2i∫∞

0

(
Vi + λ2i τ

2
)−1/2

πλ2 (λ
2
i ) exp

(
− (yi−xT

i β)2
2(Vi+λ2i τ 2 )

)
dλ2i

(19)

If π2
λ is proper, by Lebesgue dominated convergence theorem, the denomi-

nator in (19) converges toV−1/2
i exp(− (yi−xT

i β)2
2Vi

) as τ 2 → 0. Let N denote
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the numerator, ri = |yi − xTi β| and c = Vi(1 − ε)/ε. It is obvious that

exp
(

− εr
2
i

2Vi

)∫ ∞

c/τ 2

(
Vi + λ2i τ

2)−1/2
πλ2

(
λ2i
)
dλ2i ≤ N

≤ (Vi/ε)
−1/2

∫ ∞

c/τ 2
πλ2 (λ

2
i )dλ

2
i .

If πλ2 (λ2i ) = exp(−λ2i ), N ≤ (Vi/ε)
−1/2 exp(−c/τ 2). On the other hand,

N ≥ exp
(

− εr
2
i

2Vi

)∫ ∞

c/τ 2
(Vi + λ2i τ

2)−1/2 exp(−λ2i )dλ2i

= 1
τ 2

exp
(

− εr
2
i

2Vi

)∫ ∞

c
(Vi + x)−1/2 exp(−x/τ 2)dx

≥ 1
τ 2

exp
(

− εr
2
i

2Vi

)∫ 2c

c
(Vi + x)−1/2 exp(−x/τ 2)dx

≥ 1
τ 2

exp
(

− εr
2
i

2Vi

)
(Vi + 2c)−1/2

∫ 2c

c
exp(−x/τ 2)dx

= exp
(

− εr
2
i

2Vi

)
(Vi + 2c)−1/2 exp(−c/τ 2)(1 − exp(−c/τ 2)).

Therefore, P(BGL,i < ε | β, τ 2, yi) � exp(−c/τ 2) as τ 2 → 0.
If πλ2 (λ2i ) = 1

B(a,b) (λ
2
i )

a−1(1 + λ2i )
−a−b, 0 < a, b ≤ 1, then

N ≤ (Vi/ε)
−1/2

B(a, b)

∫ ∞

c/τ 2

(
λ2i
)−a (1 + λ2i

)−a−b dλ2i

= (Vi/ε)
−1/2

B(a, b)

∫ 1

c/(c+τ 2 )
xa−1(1 − x)b−1dx

≤ (Vi/ε)
−1/2

B(a, b)

(
c

c + τ 2

)a−1 ∫ 1

c/(c+τ 2 )
(1 − x)b−1dx

= (Vi/ε)
−1/2

bB(a, b)

(
c

c + τ 2

)a−1 (
τ 2

c + τ 2

)b

.

On the other hand,

N ≥ exp(−εr2i /(2Vi))

B(a, b)

∫ ∞

c/τ 2

(
Vi + λ2i τ

2)−1/2 (
λ2i
)a−1 (1 + λ2i

)−a−b dλ2i

= exp(−εr2i /(2Vi))

B(a, b)

∫ 1

c/(c+τ 2 )
(Vi + xτ 2/

(1 − x))−1/2xa−1(1 − x)b−1dx

≥ exp(−εr2i /(2Vi))

B(a, b)

(
τ 2

c + τ 2

)b−1 ∫ 1

c/(c+τ 2 )
(Vi + τ 2/(1 − x))−1/2dx

≥ exp(−εr2i /(2Vi))

B(a, b)

(
τ 2

c + τ 2

)b−1 (
τ 2Vi

c + τ 2
+ τ 2

)−1/2

×
∫ 1

c/(c+τ 2 )
(1 − x)1/2dx

= exp(−εr2i /(2Vi))

(3/2)B(a, b)
(Vi + c + τ 2)−1/2

(
τ 2

c + τ 2

)b

.

Therefore, P(BGL,i < ε | β, τ 2, yi) � τ 2b as τ 2 → 0.
Similarly,

P(BGL,i > ε | β, τ 2, yi)

=
∫ c/τ 2

0

(
Vi + λ2i τ

2)−1/2
πλ2

(
λ2i
)
exp

(
− r2i

2(Vi+λ2i τ 2)

)
dλ2i∫∞

0

(
Vi + λ2i τ

2
)−1/2

πλ2 (λ
2
i ) exp

(
− r2i

2(Vi+λ2i τ 2 )
)
dλ2i

. (20)

Let N2 and D2 denote the numerator and denominator in (20). We have

N2 ≤ V−1/2
i exp

(−εr2i /(2Vi)
) ∫ c/τ 2

0
πλ2 (λ

2
i )dλ

2
i ≤ 1

and for any 0 < ε1 < ε

D2 ≥
∫ ∞

Vi(1−ε1 )/ε1

(
Vi + λ2i τ

2)−1/2
πλ2

(
λ2i
)
exp

(
− r2i
2
(
Vi + λ2i τ

2
)) dλ2i

≥ exp
(−ε1r2i /(2Vi)

) ∫ ∞

Vi(1−ε1 )/ε1

(
Vi + λ2i τ

2)−1/2
πλ2

(
λ2i
)
dλ2i . (21)

As a result, P(BGL,i > ε | β, τ 2, yi) ≤ C exp{−(ε − ε1)r2i /(2Vi)}, where C
is a constant does not depend on ri and P(BGL,i > ε | β, τ 2, yi) → 0 as
ri → ∞. �

Acknowledgements
The authors thank Drs. G. Datta, A. Mandal, A. Chakraborty, and J. Maples
for providing the datasets, and the editor, associate editors, and three anony-
mous reviewers for insightful comments and suggestions which improved
the article significantly.

Funding

Ghosh’s research was partially funded by SES-1327359.

References

Ando, T. (2007), “Bayesian Predictive Information Criterion for the
Evaluation of Hierarchical Bayesian and Empirical Bayes Models,”
Biometrika, 94, 443–458. [1486]

Armagan, A., Clyde, M., and Dunson, D. B. (2011), “Generalized BetaMix-
tures of Gaussians,” in Advances in Neural Information Processing Sys-
tems, eds. J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira and K.
Q. Weinberger, Curran Associates, Inc., pp. 523–531. [1477]

Armagan, A., Dunson, D. B., and Lee, J. (2012), “GeneralizedDouble Pareto
Shrinkage,” Statistica Sinica, 23, 119–143. [1477]

Battese, G. E., Harter, R. M., and Fuller, W. A. (1988), “An Error-
ComponentsModel for Prediction of County CropAreas Using Survey
and Satellite Data,” Journal of the American Statistical Association, 83,
28–36. [1476]

Berger, J. (1980), “A Robust Generalized Bayes Estimator and Confidence
Region for a Multivariate Normal Mean,” The Annals of Statistics, 8,
716–761. [1477]

——— (2013), Statistical Decision Theory and Bayesian Analysis, New York:
Springer Science & Business Media. [1480]

Carvalho, C.M., Polson, N. G., and Scott, J. G. (2010), “TheHorseshoe Esti-
mator for Sparse Signals,” Biometrika, 97, 465–480. [1477]

Chakraborty, A., Datta, G. S., and Mandal, A. (2016), “A Two-Component
Normal Mixture Alternative to the Fay–Herriot Model,” Statistics in
Transition New Series, 17, 67–90. [1479]

Datta, G. S., and Ghosh, M. (1991), “Bayesian Prediction in Linear Mod-
els: Applications to Small Area Estimation,” The Annals of Statistics, 19,
1748–1770. [1476]

Datta, G. S., Ghosh, M., Nangia, N., and Natarajan, K. (1996), “Estimation
of Median Income of Four-Person Families: A Bayesian Approach,” in
Bayesian Analysis in Statistics and Econometrics, eds. D. A. Berry, K. M.
Chaloner, and J. K. Geweke, New York: Wiley, pp. 129–140. [1477]

Datta, G. S., Hall, P., and Mandal, A. (2011), “Model Selection by Testing
for the Presence of Small-Area Effects, and Application to Area-Level
Data,” Journal of the American Statistical Association, 106, 362–374.
[1476]

Datta, G. S., and Lahiri, P. (1995), “Robust Hierarchical Bayes Estimation of
Small Area Characteristics in the Presence of Covariates and Outliers,”
Journal of Multivariate Analysis, 54, 310–328. [1476]



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1489

Datta, G. S., andMandal, A. (2015), “Small Area EstimationWithUncertain
Random Effects,” Journal of the American Statistical Association, 110,
1735–1744. [1477,1478,1480,1484,1485]

Datta, G. S., Rao, J. N. K., and Smith, D. D. (2005), “On Measuring the
Variability of Small Area Estimators Under a Basic Area Level Model,”
Biometrika, 92, 183–196. [1476]

Datta, J., and Ghosh, J. K. (2013), “Asymptotic Properties of Bayes Risk for
the Horseshoe Prior,” Bayesian Analysis, 8, 111–132. [1477]

Fabrizi, E., and Trivisano, C. (2010), “Robust Linear Mixed Models for
Small Area Estimation,” Journal of Statistical Planning and Inference,
140, 433–443. [1476]

Fay,M. P., andGraubard, B. I. (2001), “Small-SampleAdjustments forWald-
Type Tests Using Sandwich Estimators,” Biometrics, 57, 1198–1206.
[1477]

Fay, R. E., and Herriot, R. A. (1979), “Estimates of Income for Small Places:
An Application of James–Stein Procedures to Census Data,” Journal of
the American Statistical Association, 74, 269–277. [1476]

Fruehwirth-Schnatter, S., andWagner, H. (2011), “Bayesian Variable Selec-
tion for Random Intercept Modeling of Gaussian and Non-Gaussian
Data,” in Bayesian Statistics (Vol. 9), eds. J. Bernardo, M. Bayarri, J.
Berger, A. Dawid, D. Heckerman, A. Smith, and M. West, New York:
Oxford University Press, pp. 165–200. [1478]

Gelfand, A. E., and Smith, A. F. (1990), “Sampling-Based Approaches to
Calculating Marginal Densities,” Journal of the American Statistical
Association, 85, 398–409. [1479]

Gelman, A. (2006), “Prior Distributions for Variance Parameters in Hierar-
chical Models,” Bayesian Analysis, 1, 515–534. [1479,1487]

Ghosh, P., Tang, X., Ghosh, M., and Chakrabarti, A. (2016), “Asymptotic
Properties of Bayes Risk of a General Class of Shrinkage Priors in
Multiple Hypothesis Testing Under Sparsity,” Bayesian Analysis, 11,
753–796. [1477]

Griffin, J. E., and Brown, P. J. (2005), “Alternative Prior Distributions for
Variable Selection With Very Many More Variables Than Observa-
tions,” Technical Report, University of Warwick. [1477]

——— (2010), “Inference With Normal-Gamma Prior Distributions in
Regression Problems,” Bayesian Analysis, 5, 171–188. [1478]

Jiang, J., and Lahiri, P. (2006a), “Estimation of Finite Population Domain
Means: A Model-Assisted Empirical Best Prediction Approach,” Jour-
nal of the American Statistical Association, 101, 301–311. [1476]

——— (2006b), “MixedModel Prediction and Small Area Estimation,” Test,
15, 1–96. [1476]

Jiang, J., Lahiri, P., and Wan, S.-M. (2002), “A Unified Jackknife Theory for
Empirical Best PredictionWithM-Estimation,”TheAnnals of Statistics,
30, 1782–1810. [1476]

Kass, R. E., and Raftery, A. E. (1995), “Bayes Factors,” Journal of the Amer-
ican Statistical Association, 90, 773–795. [1486]

Lahiri, P., and Rao, J. N. K. (1995), “Robust Estimation of Mean Squared
Error of Small Area Estimators,” Journal of the American Statistical
Association, 90, 758–766. [1476]

Li, Y., and Lahiri, P. (2007), “Robust Model-Based andModel-Assisted Pre-
dictors of the Finite Population Total,” Journal of the American Statisti-
cal Association, 102, 664–673. [1476]

Molina, I., Nandram, B., and Rao, J. N. K. (2014), “Small Area Estimation
of General ParametersWith Application to Poverty Indicators: A Hier-
archical Bayes Approach,” The Annals of Applied Statistics, 8, 852–885.
[1476]

Morales, D., Pagliarella, M. C., and Salvatore, R. (2015), “Small Area
Estimation of Poverty Indicators Under Partitioned Area-Level Time
Models,” Statistics and Operations Research Transactions, 39, 19–34.
[1476]

Morris, C., and Tang, R. (2011), “Estimating Random Effects Via Adjust-
ment for Density Maximization,” Statistical Science, 26, 271–287.
[1480]

Polson, N. G., and Scott, J. G. (2009), “Alternative Global–Local Shrink-
age Rules UsingHypergeometric–BetaMixtures,” Technical Report 14,
Duke University, Department of Statistical Science. [1477]

———(2010), “ShrinkGlobally, Act Locally: Sparse BayesianRegularization
and Prediction,” Bayesian Statistics, 9, 501–538. [1477]

——— (2012a), “Local Shrinkage Rules, Lévy Processes and Regularized
Regression,” Journal of the Royal Statistical Society, Series B, 74, 287–
311. [1477]

——— (2012b), “On the Half-Cauchy Prior for a Global Scale Parameter,”
Bayesian Analysis, 7, 887–902. [1477,1479]

Rao, J. N., and Molina, I. (2015), Small Area Estimation, Hoboken, NJ:
Wiley. [1476]

Scott, J. G. (2011), “Bayesian Estimation of Intensity Surfaces on the Sphere
Via Needlet Shrinkage and Selection,” Bayesian Analysis, 6, 307–327.
[1477]

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van Der Linde,
A. (2002), “Bayesian Measures of Model Complexity and Fit,”
Journal of the Royal Statistical Society, Series B, 64, 583–639.
[1483]

Strawderman, W. E. (1971), “Proper Bayes Minimax Estimators of the
Multivariate Normal Mean,” The Annals of Mathematical Statistics, 42,
385–388. [1477]

Tarozzi, A., and Deaton, A. (2009), “Using Census and Survey Data to Esti-
mate Poverty and Inequality for Small Areas,” The Review of Economics
and Statistics, 91, 773–792. [1476]

You, Y., and Chapman, B. (2006), “Small Area Estimation Using Area Level
Models and Estimated Sampling Variances,” Survey Methodology, 32,
97. [1477]


	Abstract
	1.Introduction
	2.Model
	3.Computation
	4.Simulations
	5.Prior Selection
	6.Data Analyses
	6.1.State Level Child Poverty Ratio
	6.2.County Level Overall Poverty Rates

	7.Discussion
	7.1.Proof of Theorems

	Acknowledgements
	Funding
	References

